A malware detection model based on imbalanced heterogeneous graph embeddings

计算机科学 恶意软件 数据挖掘 分类器(UML) 图形 人工智能 机器学习 Android(操作系统) 理论计算机科学 计算机安全 操作系统
作者
Tun Li,Ya Wen Luo,Xin Wan,Qian Li,Qilie Liu,Rong Wang,Chaolong Jia,Yunpeng Xiao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123109-123109 被引量:8
标识
DOI:10.1016/j.eswa.2023.123109
摘要

The proliferation of malware in recent years has posed a significant threat to the security of computers and mobile devices. Detecting malware, especially on the Android platform, has become a growing concern for researchers and the software industry. This paper proposes a new method for detecting Android malware based on unbalanced heterogeneous graph embedding. First of all, most malware datasets contain an imbalance of malicious and benign samples, since some types of malware are scarce and difficult to collect. Thus, as a result of this problem, the classification algorithm is unable to analyze the minority samples through sufficient data, resulting in poor downstream classifier performance, in light of the fact that adversarial generation networks possess the characteristic of completing data, an algorithm for generating graph structure data is presented, in which nodes are generated to simulate the distribution of minority nodes within a network topology. Then, considering that heterogeneous information networks have the characteristics of retaining rich node semantic features and mining implicit relationships, heterogeneous graphs are used to construct models for different types of entities (i.e. Apps, APIs, permissions, intents, etc.) and different meta-paths. Finally, a new method is introduced to alleviate the over-smoothing phenomenon of node information in the propagation of deep network. In the deep GCN, we first sample the leader nodes of each layer node, and then add a residual connection and an identity map in order to determine the characteristics of the high-order leader. In this paper, a self-attention-based semantic fusion method is also applied to adaptively fuse embedded representations of software nodes under different meta-paths. The test results demonstrate that the proposed IHODroid model effectively detects malicious software. In the DREBIN dataset, which consists of 123,453 Android applications and 5,560 malicious samples, the IHODroid model achieves an accuracy of 0.9360 and an F1 score of 0.9360, outperforming other state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hansa完成签到,获得积分0
3秒前
静姝发布了新的文献求助10
5秒前
6秒前
7秒前
犯困完成签到,获得积分10
8秒前
在水一方应助John采纳,获得10
9秒前
糖心发布了新的文献求助10
11秒前
810完成签到,获得积分20
12秒前
Dellamoffy完成签到,获得积分10
12秒前
静姝完成签到,获得积分20
13秒前
社牛小柯完成签到,获得积分10
18秒前
老高完成签到 ,获得积分10
18秒前
白泽阳发布了新的文献求助10
19秒前
眼睛大的皮卡丘完成签到,获得积分20
20秒前
科研通AI5应助tianlongli采纳,获得10
21秒前
22秒前
xl完成签到 ,获得积分10
24秒前
南山无梅落完成签到,获得积分10
26秒前
zzzz发布了新的文献求助10
26秒前
27秒前
crj发布了新的文献求助30
29秒前
29秒前
SciGPT应助Happy采纳,获得30
30秒前
所所应助yongzaizhuigan采纳,获得10
31秒前
Steven发布了新的文献求助10
31秒前
词多多完成签到,获得积分10
33秒前
ggc发布了新的文献求助10
33秒前
研友_Z7myRL发布了新的文献求助10
33秒前
36秒前
燕小丙发布了新的文献求助10
37秒前
37秒前
40秒前
41秒前
123发布了新的文献求助10
41秒前
42秒前
dx发布了新的文献求助10
42秒前
爆米花应助一直小虾米采纳,获得10
43秒前
Phoebe发布了新的文献求助30
43秒前
昏睡的蟠桃发布了新的文献求助100
44秒前
qwer发布了新的文献求助10
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188407
求助须知:如何正确求助?哪些是违规求助? 3724266
关于积分的说明 11734577
捐赠科研通 3401446
什么是DOI,文献DOI怎么找? 1866594
邀请新用户注册赠送积分活动 923404
科研通“疑难数据库(出版商)”最低求助积分说明 834490