亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Review of Deep Learning Methods for Photoplethysmography Data

软件可移植性 光容积图 深度学习 可解释性 计算机科学 人工智能 机器学习 过程(计算) 可扩展性 数据科学 数据库 滤波器(信号处理) 计算机视觉 程序设计语言 操作系统
作者
Guangkun Nie,Jiabao Zhu,Gongzheng Tang,Deyun Zhang,Shijia Geng,Qinghao Zhao,Shenda Hong
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2401.12783
摘要

Photoplethysmography (PPG) is a highly promising device due to its advantages in portability, user-friendly operation, and non-invasive capabilities to measure a wide range of physiological information. Recent advancements in deep learning have demonstrated remarkable outcomes by leveraging PPG signals for tasks related to personal health management and other multifaceted applications. In this review, we systematically reviewed papers that applied deep learning models to process PPG data between January 1st of 2017 and July 31st of 2023 from Google Scholar, PubMed and Dimensions. Each paper is analyzed from three key perspectives: tasks, models, and data. We finally extracted 193 papers where different deep learning frameworks were used to process PPG signals. Based on the tasks addressed in these papers, we categorized them into two major groups: medical-related, and non-medical-related. The medical-related tasks were further divided into seven subgroups, including blood pressure analysis, cardiovascular monitoring and diagnosis, sleep health, mental health, respiratory monitoring and analysis, blood glucose analysis, as well as others. The non-medical-related tasks were divided into four subgroups, which encompass signal processing, biometric identification, electrocardiogram reconstruction, and human activity recognition. In conclusion, significant progress has been made in the field of using deep learning methods to process PPG data recently. This allows for a more thorough exploration and utilization of the information contained in PPG signals. However, challenges remain, such as limited quantity and quality of publicly available databases, a lack of effective validation in real-world scenarios, and concerns about the interpretability, scalability, and complexity of deep learning models. Moreover, there are still emerging research areas that require further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会厌完成签到 ,获得积分10
2秒前
桐桐应助张佳明采纳,获得20
4秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Glitter完成签到 ,获得积分10
7秒前
10秒前
13秒前
Zenglongying完成签到 ,获得积分10
23秒前
24秒前
张佳明发布了新的文献求助20
30秒前
林珍完成签到,获得积分10
37秒前
family完成签到,获得积分10
38秒前
45秒前
46秒前
46秒前
张佳明完成签到,获得积分10
47秒前
林珍发布了新的文献求助10
49秒前
kbcbwb2002完成签到,获得积分10
51秒前
53秒前
zzzzzz完成签到,获得积分10
56秒前
zzzzzz发布了新的文献求助10
59秒前
ding应助可靠的寻绿采纳,获得10
1分钟前
科研花完成签到 ,获得积分10
1分钟前
Maryamgvl关注了科研通微信公众号
1分钟前
重要纸飞机完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ruhemann发布了新的文献求助10
1分钟前
F.T完成签到,获得积分10
1分钟前
彭于彦祖应助Ukuleleen采纳,获得20
1分钟前
隐形曼青应助怡然的宝莹采纳,获得10
1分钟前
1分钟前
Maryamgvl发布了新的文献求助10
1分钟前
Ukuleleen完成签到,获得积分20
1分钟前
古哉完成签到,获得积分10
1分钟前
不懂白完成签到 ,获得积分10
1分钟前
Hello应助lynn采纳,获得30
1分钟前
jyy完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792423
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281893
捐赠科研通 3053438
什么是DOI,文献DOI怎么找? 1675609
邀请新用户注册赠送积分活动 803592
科研通“疑难数据库(出版商)”最低求助积分说明 761468