fNIRS-based graph frequency analysis to identify mild cognitive impairment in Parkinson’s disease

痴呆 帕金森病 图形 支持向量机 神经影像学 模式识别(心理学) 神经心理学 邻接矩阵 人工智能 图论 频域 计算机科学 认知 神经科学 心理学 医学 数学 疾病 病理 理论计算机科学 组合数学 计算机视觉
作者
Zhilin Shu,Jin Wang,Yuanyuan Cheng,Jiewei Lu,Jianeng Lin,Yue Wang,Xinyuan Zhang,Yang Yu,Zhizhong Zhu,Jianda Han,Jialing Wu,Ningbo Yu
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:402: 110031-110031 被引量:4
标识
DOI:10.1016/j.jneumeth.2023.110031
摘要

Early identification of mild cognitive impairment (MCI) is essential for its treatment and the prevention of dementia in Parkinson's disease (PD). Existing approaches are mostly based on neuropsychological assessments, while brain activation and connection have not been well considered. This paper presents a neuroimaging-based graph frequency analysis method and the generated features to quantify the brain functional neurodegeneration and distinguish between PD-MCI patients and healthy controls. The Stroop color-word experiment was conducted with 20 PD-MCI patients and 34 healthy controls, and the brain activation was recorded with functional near-infrared spectroscopy (fNIRS). Then, the functional brain network was constructed based on Pearson's correlation coefficient calculation between every two fNIRS channels. Next, the functional brain network was represented as a graph and decomposed in the graph frequency domain through the graph Fourier transform (GFT) to obtain the eigenvector matrix. Total variation and weighted zero crossings of eigenvectors were defined and integrated to quantify functional interaction between brain regions and the spatial variability of the brain network in specific graph frequency ranges, respectively. After that, the features were employed in training a support vector machine (SVM) classifier. The presented method achieved a classification accuracy of 0.833 and an F1 score of 0.877, significantly outperforming existing methods and features. Our method provided improved classification performance in the identification of PD-MCI. The results suggest that the presented graph frequency analysis method well identify PD-MCI patients and the generated features promise functional brain biomarkers for PD-MCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anei完成签到,获得积分20
2秒前
ralph_liu发布了新的文献求助10
2秒前
2秒前
情怀应助莉莉子采纳,获得10
2秒前
NexusExplorer应助小禾采纳,获得10
3秒前
Anei发布了新的文献求助10
5秒前
5秒前
snowy完成签到,获得积分10
5秒前
9秒前
255完成签到,获得积分10
9秒前
Luojiayi发布了新的文献求助10
11秒前
angellas完成签到,获得积分10
11秒前
12秒前
12秒前
lang完成签到,获得积分10
13秒前
科研通AI5应助魏伯安采纳,获得10
14秒前
CipherSage应助fanfan采纳,获得10
16秒前
CodeCraft应助王琴采纳,获得10
16秒前
清爽的觅儿完成签到,获得积分10
16秒前
星纪发布了新的文献求助10
16秒前
17秒前
与我常在发布了新的文献求助10
18秒前
科研通AI5应助www采纳,获得30
19秒前
魏伯安发布了新的文献求助10
23秒前
SciGPT应助是真的不吃鱼采纳,获得10
25秒前
25秒前
妍宝贝发布了新的文献求助80
25秒前
嘎嘎发布了新的文献求助10
26秒前
BBB完成签到,获得积分10
27秒前
28秒前
28秒前
Costing完成签到,获得积分10
29秒前
30秒前
王琴发布了新的文献求助10
30秒前
傅以柳完成签到,获得积分10
30秒前
31秒前
深情安青应助hahhhah采纳,获得10
31秒前
34秒前
嘻嘻完成签到,获得积分10
34秒前
沉默是金发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479336
求助须知:如何正确求助?哪些是违规求助? 3936825
关于积分的说明 12213102
捐赠科研通 3591524
什么是DOI,文献DOI怎么找? 1975029
邀请新用户注册赠送积分活动 1012172
科研通“疑难数据库(出版商)”最低求助积分说明 905551