TCM-KDIF: An Information Interaction Framework Driven by Knowledge-Data and Its Clinical Application in Traditional Chinese Medicine

计算机科学 知识管理 信息系统 数据科学 工程类 电气工程
作者
Zhi Liu,Jiaxi Yang,Kui Chen,Tao Yang,Xiaochen Li,Bingjie Lu,Dianzheng Fu,Zeyu Zheng,Changyong Luo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 20002-20014 被引量:4
标识
DOI:10.1109/jiot.2024.3368029
摘要

The effectiveness of Traditional Chinese Medicine (TCM) has been proved by various researches in decades, especially in the COVID-19 pandemic. Numerous TCM-AI interdisciplinary researches have been proposed for trying to modelling its mechanism and knowledge, assisting efficient decision making of human doctors. Currently, most of the works are focus on supervised learning paradigm. Such methodology leads to the fact that models fail in scenario of rare disease (few samples are available). In this work, we focus on the knowledge-data oriented mechanism and design a framework enables the model ability to interact the information between knowledge and samples, called TCM-KDIF. We build a TCM knowledge graph with the TCM concepts (macroscopic) and molecular biology (microcosmic). Based on it, models can interact the information of training samples with external knowledge graph by TCMKDIF. The proposed framework extracts the features of training samples and its related knowledge subgraph first. Then, these two types of information communicate in both directions between samples and knowledge subgraph iteratively. The TCM-KDIF is evaluated on the TCM prescription generation task. The experimental results demonstrate that the TCM-KDIF outperforms all comparison baselines, reduces model's dependency on training samples, and reveal the possible interact mechanisms between medicine and symptoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stst完成签到,获得积分10
刚刚
1秒前
slliu关注了科研通微信公众号
1秒前
飘逸冷珍完成签到 ,获得积分10
2秒前
linfeng发布了新的文献求助10
2秒前
清皓完成签到,获得积分10
3秒前
3秒前
朴素幼晴发布了新的文献求助10
3秒前
medaW发布了新的文献求助10
3秒前
张一帆完成签到,获得积分10
4秒前
沙子完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
美好山槐发布了新的文献求助10
6秒前
chencchen发布了新的文献求助10
6秒前
疯猴子果汁完成签到 ,获得积分10
6秒前
好好学习的小学生完成签到,获得积分10
7秒前
谨言完成签到,获得积分10
7秒前
jjyy应助xian采纳,获得10
7秒前
超大只怪兽完成签到,获得积分20
9秒前
风萧零落完成签到,获得积分10
10秒前
11秒前
活泼水桃发布了新的文献求助20
11秒前
nature24发布了新的文献求助10
11秒前
科研通AI6应助朴素幼晴采纳,获得10
12秒前
Murmansk完成签到,获得积分10
12秒前
许愿非树完成签到,获得积分10
12秒前
桐桐应助鼠鼠想养猫采纳,获得10
12秒前
CipherSage应助YR采纳,获得10
12秒前
ZZ完成签到 ,获得积分10
12秒前
Jaycee完成签到,获得积分10
12秒前
Aria发布了新的文献求助10
12秒前
美好山槐完成签到,获得积分10
13秒前
Dean应助Luna采纳,获得30
13秒前
dick_zhang完成签到,获得积分10
14秒前
sxscdll完成签到,获得积分20
15秒前
123完成签到,获得积分10
15秒前
斯文败类应助skinnylove采纳,获得10
15秒前
chencchen完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4474698
求助须知:如何正确求助?哪些是违规求助? 3933372
关于积分的说明 12203591
捐赠科研通 3587878
什么是DOI,文献DOI怎么找? 1972534
邀请新用户注册赠送积分活动 1010264
科研通“疑难数据库(出版商)”最低求助积分说明 903868