Integration of machine learning for developing a prognostic signature related to programmed cell death in colorectal cancer

结直肠癌 程序性细胞死亡 基因签名 机器学习 精密医学 随机森林 计算生物学 肿瘤科 生物信息学 计算机科学 癌症 细胞凋亡 人工智能 生物 基因 基因表达 医学 遗传学
作者
Qitong Xu,Jian‐Kun Qiang,Zhiye Huang,Wanju Jiang,Ximao Cui,Renhao Hu,Tao Wang,Xiang‐Lan Yi,Jia‐Yuan Li,Zuoren Yu,Shun Zhang,Tao Du,Jinhui Liu,Xiaohua Jiang
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (5): 2908-2926 被引量:2
标识
DOI:10.1002/tox.24157
摘要

Abstract Background Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD‐related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. Method We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome‐based CRC prognostic models. Result Our integrated model successfully identified differentially expressed PCD‐related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high‐risk and low‐risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. Conclusion The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
weiyongswust完成签到 ,获得积分10
4秒前
5秒前
分子筛发布了新的文献求助10
8秒前
再沉默完成签到,获得积分10
8秒前
李爱国应助miaomiao采纳,获得10
8秒前
金丝鼠发布了新的文献求助10
9秒前
自己哭哭完成签到 ,获得积分10
10秒前
13秒前
Xieyusen发布了新的文献求助20
13秒前
14秒前
Atlantis发布了新的文献求助10
17秒前
qiao应助司空三毒采纳,获得10
17秒前
18秒前
俏皮连虎完成签到,获得积分10
18秒前
ZZzz完成签到 ,获得积分10
18秒前
唯美完成签到,获得积分10
19秒前
无花果应助dsuccess采纳,获得10
25秒前
小韩完成签到,获得积分10
28秒前
29秒前
29秒前
TMUEH_FCL给Soir的求助进行了留言
29秒前
31秒前
SCIfafafafa发布了新的文献求助10
32秒前
36秒前
didididada完成签到 ,获得积分10
37秒前
38秒前
优美丹雪完成签到,获得积分20
39秒前
39秒前
40秒前
43秒前
Xieyusen发布了新的文献求助10
44秒前
仙贝完成签到,获得积分10
44秒前
45秒前
kittykitten完成签到 ,获得积分10
45秒前
852应助SCIfafafafa采纳,获得10
46秒前
yu发布了新的文献求助10
49秒前
Xieyusen完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325811
关于积分的说明 10224284
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669109
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649