已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Incentive Mechanism for Long-Term Federated Learning in Autonomous Driving

激励 自私 适应性 计算机科学 热情 期限(时间) 过程(计算) 机制(生物学) 微观经济学 心理学 社会心理学 经济 哲学 物理 管理 认识论 量子力学 操作系统
作者
Yuchuan Fu,Zhenyu Li,Sha Liu,Changle Li,F. Richard Yu,Nan Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (9): 15642-15655 被引量:1
标识
DOI:10.1109/jiot.2023.3348498
摘要

FL enables collaborative training of autonomous driving models without sharing the original data. It enhances the model's environmental adaptability and establishes an effective distributed paradigm for connected and autonomous vehicles (CAVs) to share driving experiences as well as make collaborative decisions. However, participants' negative behavior, such as free riding due to selfishness, can significantly reduce federated learning (FL) training efficiency and model accuracy. Unlike previous studies that focused solely on a single FL task, this article proposes an incentive mechanism for long-term driving model training, which models the interactions between participants and the server during the long-term FL process as an infinitely repeated game. The incentive mechanism considers the relationship between participants' historical behaviors and their future incomes, motivating participants to maintain positive behaviors throughout the long-term FL process and ensuring the efficient operation of the training process. Furthermore, in order to increase CAVs' enthusiasm, we design reward rules that attract new participants and encourage sustained engagement. The simulation results demonstrate that the proposed incentive mechanism maximizes the profits of both CAVs and the server in long-term FL, which effectively reduces negative CAVs' behaviors and improves the efficiency of FL training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Artin完成签到,获得积分10
刚刚
1秒前
原野发布了新的文献求助10
4秒前
小二郎应助杨杨杨采纳,获得10
4秒前
4秒前
putao发布了新的文献求助10
5秒前
科研通AI2S应助fangzh采纳,获得10
5秒前
6秒前
古炮完成签到 ,获得积分10
7秒前
7秒前
guan发布了新的文献求助10
9秒前
G浅浅发布了新的文献求助10
11秒前
櫹櫆完成签到 ,获得积分10
12秒前
shimhjy应助oleskarabach采纳,获得10
13秒前
14秒前
guan完成签到,获得积分20
16秒前
bai完成签到 ,获得积分10
17秒前
杨杨杨发布了新的文献求助10
19秒前
lucky完成签到 ,获得积分10
21秒前
G浅浅完成签到,获得积分10
22秒前
大溺完成签到 ,获得积分10
22秒前
HEIKU应助小西瓜采纳,获得10
24秒前
JamesPei应助绝尘采纳,获得10
26秒前
鑫光熠熠完成签到 ,获得积分10
26秒前
杨杨杨完成签到,获得积分10
26秒前
LLL完成签到,获得积分10
27秒前
27秒前
陈子皮boy完成签到,获得积分10
30秒前
丰富的绮波完成签到 ,获得积分10
30秒前
阿瓜发布了新的文献求助10
31秒前
领导范儿应助LLL采纳,获得10
32秒前
32秒前
陈子皮boy发布了新的文献求助10
33秒前
李爱国应助科研通管家采纳,获得10
33秒前
34秒前
调皮的千万完成签到,获得积分10
34秒前
Jenny发布了新的文献求助100
36秒前
微笑冰棍完成签到 ,获得积分10
37秒前
lanxinge完成签到 ,获得积分20
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800840
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329131
捐赠科研通 3062791
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702