亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VDFChain: Secure and verifiable decentralized federated learning via committee-based blockchain

计算机科学 块链 正确性 可验证秘密共享 Byzantine容错 联合学习 方案(数学) 计算机安全 单点故障 分布式计算 理论计算机科学 容错 集合(抽象数据类型) 算法 数学分析 程序设计语言 数学
作者
Ming Zhou,Zhen Yang,Haiyang Yu,Shui Yu
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:223: 103814-103814 被引量:12
标识
DOI:10.1016/j.jnca.2023.103814
摘要

Decentralized federated learning tries to address the single point of failure and privacy issue of federated learning by leveraging committee-based blockchain, which has been extensively studied among academic and industrial fields. The introduction of committees improves the efficiency of decentralized federated learning. However, it also is prone to attacks from Byzantine committee members, which interfere with the correctness of the global model by modifying aggregation results. Therefore, the security of committees is the key challenge for decentralized federated learning via committee-based blockchain. To solve this problem, in this paper, we propose VDFChain, a secure and verifiable decentralized federated learning scheme via committee-based blockchain. Specifically, based on the polynomial commitment technique, we propose a trusted committee mechanism, which can defend against attacks from Byzantine committee members and ensure the correctness of the aggregation model. Moreover, we use lossless masking techniques and committee mechanisms to effectively provide secure aggregation. For Byzantine attacks in decentralized federated learning, different from traditional defense methods against it, the VDFChain improves the fault tolerance of decentralized federated learning and provides a feasible and practical solution to build a secure decentralized federated learning. Security analysis shows that our scheme is provably secure. We have conducted extensive comparison experiments to evaluate the performance of the proposed framework, and experimental results show that our scheme has superior computational and communication performance compared to the state-of-the-art schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang完成签到 ,获得积分20
17秒前
YifanWang完成签到,获得积分0
23秒前
44秒前
49秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
万能图书馆应助CC采纳,获得30
2分钟前
科目三应助沉醉的中国钵采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
磷酸丙糖异构酶完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助雪山飞龙采纳,获得10
2分钟前
lanxinge完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
wanci应助科研通管家采纳,获得50
3分钟前
量子星尘发布了新的文献求助10
3分钟前
pjjpk01完成签到,获得积分10
3分钟前
3分钟前
CC发布了新的文献求助30
4分钟前
矜持完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
激动的55完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
搜集达人应助车哥爱学习采纳,获得10
6分钟前
6分钟前
所所应助CC采纳,获得30
6分钟前
7分钟前
7分钟前
Wenqi发布了新的文献求助10
7分钟前
7分钟前
Wenqi完成签到,获得积分10
7分钟前
balko发布了新的文献求助10
7分钟前
7分钟前
CC发布了新的文献求助30
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622275
求助须知:如何正确求助?哪些是违规求助? 4707334
关于积分的说明 14939084
捐赠科研通 4770272
什么是DOI,文献DOI怎么找? 2552277
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475085