Swin Transformer-Based Dynamic Semantic Communication for Multi-User With Different Computing Capacity

计算机科学 变压器 计算机网络 电子工程 电气工程 工程类 电压
作者
Loc X. Nguyen,Ye Lin Tun,Yan Kyaw Tun,Minh N. H. Nguyen,Chaoning Zhang,Zhu Han,Choong Seon Hong
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (6): 8957-8972 被引量:2
标识
DOI:10.1109/tvt.2024.3362328
摘要

Semantic communication has gained significant attention from researchers as a promising technique to replace conventional communication in the next generation of communication systems, primarily due to its ability to reduce communication costs. However, little literature has studied its effectiveness in multi-user scenarios, particularly when there are variations in the model architectures used by users and their computing capacities. To address this issue, we explore a semantic communication system that caters to multiple users with different model architectures by using a multi-purpose transmitter at the base station (BS). Specifically, the BS in the proposed framework employs semantic and channel encoders to encode the image for transmission, while the receiver utilizes its local channel and semantic decoder to reconstruct the original image. Our joint source-channel encoder at the BS can effectively extract and compress semantic features for specific users by considering the signal-to-noise ratio (SNR) and computing capacity of the user. Based on the network status, the joint source-channel encoder at the BS can adaptively adjust the length of the transmitted signal. A longer signal ensures more information for high-quality image reconstruction for the user, while a shorter signal helps avoid network congestion. In addition, we propose a hybrid loss function for training, which enhances the perceptual details of reconstructed images. Finally, we conduct a series of extensive evaluations and ablation studies to validate the effectiveness of the proposed system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
lemon完成签到,获得积分10
3秒前
冰魂应助机灵鬼采纳,获得10
4秒前
4秒前
6秒前
8秒前
Sene完成签到,获得积分10
8秒前
星辰完成签到,获得积分10
9秒前
spw完成签到 ,获得积分10
10秒前
眼角流星发布了新的文献求助10
11秒前
专注的曼卉完成签到 ,获得积分10
11秒前
hzhniubility发布了新的文献求助60
12秒前
Nancy发布了新的文献求助10
12秒前
马家奇发布了新的文献求助20
13秒前
yidi01完成签到,获得积分10
15秒前
15秒前
完美世界应助zxd采纳,获得10
19秒前
CodeCraft应助要减肥的惜萱采纳,获得10
19秒前
20秒前
nan发布了新的文献求助10
21秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
柠觉呢应助科研通管家采纳,获得10
24秒前
乔垣结衣应助科研通管家采纳,获得10
25秒前
乔垣结衣应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366