In-Situ Classification of Highly Deformed Corrugated Board Using Convolution Neural Networks

瓦楞纤维板 缓冲 卷积神经网络 质量(理念) 人工神经网络 卷积(计算机科学) 人工智能 机械工程 计算机科学 模式识别(心理学) 工程类 哲学 认识论
作者
Maciej Rogalka,Jakub Krzysztof Grabski,Tomasz Garbowski
出处
期刊:Sensors [MDPI AG]
卷期号:24 (4): 1051-1051 被引量:4
标识
DOI:10.3390/s24041051
摘要

The extensive use of corrugated board in the packaging industry is attributed to its excellent cushioning, mechanical properties, and environmental benefits like recyclability and biodegradability. The integrity of corrugated board depends on various factors, including its geometric design, paper quality, the number of layers, and environmental conditions such as humidity and temperature. This study introduces an innovative application of convolutional neural networks (CNNs) for analyzing and classifying images of corrugated boards, particularly those with deformations. For this purpose, a special device with advanced imaging capabilities, including a high-resolution camera and image sensor, was developed and used to acquire detailed cross-section images of the corrugated boards. The samples of seven types of corrugated board were studied. The proposed approach involves optimizing CNNs to enhance their classification performance. Despite challenges posed by deformed samples, the methodology demonstrates high accuracy in most cases, though a few samples posed recognition difficulties. The findings of this research are significant for the packaging industry, offering a sophisticated method for quality control and defect detection in corrugated board production. The best classification accuracy obtained achieved more than 99%. This could lead to improved product quality and reduced waste. Additionally, this study paves the way for future research on applying machine learning for material quality assessment, which could have broader implications beyond the packaging sector.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hh哈哈完成签到,获得积分10
刚刚
诚心的冷菱完成签到,获得积分10
刚刚
lucky完成签到,获得积分10
1秒前
1秒前
dan发布了新的文献求助10
1秒前
林北发布了新的文献求助10
1秒前
Dreamhappy发布了新的文献求助10
1秒前
淡然的萝完成签到,获得积分10
2秒前
2秒前
南敏株发布了新的文献求助10
2秒前
Eliauk完成签到,获得积分10
2秒前
博士僧发布了新的文献求助10
3秒前
Amanda柏完成签到,获得积分10
3秒前
虚影发布了新的文献求助10
3秒前
小番茄完成签到 ,获得积分10
4秒前
guozizi发布了新的文献求助20
4秒前
巴拉发布了新的文献求助10
4秒前
酷炫的鸭子完成签到,获得积分20
4秒前
CodeCraft应助小吴同志采纳,获得10
5秒前
wang完成签到,获得积分20
6秒前
WN发布了新的文献求助10
6秒前
8秒前
烟花应助臻灏采纳,获得10
8秒前
9秒前
huanger完成签到,获得积分10
9秒前
小小小小w完成签到,获得积分10
10秒前
明清完成签到,获得积分10
10秒前
隐形曼青应助巴拉采纳,获得10
11秒前
小熊猫完成签到,获得积分10
12秒前
轻松凡英完成签到,获得积分10
12秒前
changliu完成签到,获得积分10
12秒前
宇文追命发布了新的文献求助10
12秒前
13秒前
13秒前
dove发布了新的文献求助10
13秒前
13秒前
红红完成签到,获得积分10
14秒前
无极微光应助许诺采纳,获得20
14秒前
kkkkkk发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544876
求助须知:如何正确求助?哪些是违规求助? 4630647
关于积分的说明 14617542
捐赠科研通 4572275
什么是DOI,文献DOI怎么找? 2506774
邀请新用户注册赠送积分活动 1483805
关于科研通互助平台的介绍 1455228