Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network

卷积神经网络 计算机科学 人工智能 水准点(测量) 分割 深度学习 血涂片 对偶(语法数字) 一般化 模式识别(心理学) 机器学习 医学影像学 病理 疟疾 医学 艺术 文学类 数学分析 数学 大地测量学 地理
作者
Siraj M. Khan,Muhammad Sajjad,Naveed Abbas,José Escorcia‐Gutierrez,Margarita Gamarra,Khan Muhammad
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108146-108146 被引量:11
标识
DOI:10.1016/j.compbiomed.2024.108146
摘要

Leukocytes, also called White Blood Cells (WBCs) or leucocytes, are the cells that play a pivotal role in human health and are vital indicators of diseases such as malaria, leukemia, AIDS, and other viral infections. WBCs detection and classification in blood smears offers insights to pathologists, aiding diagnosis across medical conditions. Traditional techniques, including manual counting, detection, classification, and visual inspection of microscopic images by medical professionals, pose challenges due to their labor-intensive nature. However, traditional methods are time consuming and sometimes susceptible to errors. Here, we propose a high-performance convolutional neural network (CNN) coupled with a dual-attention network that efficiently detects and classifies WBCs in microscopic thick smear images. The main aimed of this study to enhance clinical hematology systems and expedite medical diagnostic processes. In the proposed technique, we utilized a deep convolutional generative adversarial network (DCGAN) to overcome the limitations imposed by limited training data and employed a dual attention mechanism to improve accuracy, efficiency, and generalization. The proposed technique achieved overall accuracy rates of 99.83%, 99.35%, and 99.60% for the peripheral blood cell (PBC), leukocyte images for segmentation and classification (LISC), and Raabin-WBC benchmark datasets, respectively. Our proposed approach outperforms state-of-the-art methods in terms of accuracy, highlighting the effectiveness of the strategies employed and their potential to enhance diagnostic capabilities and advance real-world healthcare practices and diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的愫完成签到,获得积分20
刚刚
我是老大应助默默雨梅采纳,获得10
刚刚
Owen应助默默雨梅采纳,获得10
刚刚
刚刚
1秒前
1秒前
无照无招完成签到,获得积分20
2秒前
thinking发布了新的文献求助10
3秒前
朝花夕拾发布了新的文献求助20
3秒前
zzt发布了新的文献求助10
3秒前
关灯完成签到,获得积分10
3秒前
张烤明完成签到,获得积分10
4秒前
11223344发布了新的文献求助10
4秒前
思思完成签到,获得积分10
4秒前
柠檬加冰发布了新的文献求助10
5秒前
上官若男应助123456hhh采纳,获得10
5秒前
wangtingyu发布了新的文献求助30
5秒前
yuan发布了新的文献求助10
6秒前
6秒前
科研通AI5应助grace采纳,获得30
6秒前
思源应助等待的大地采纳,获得10
6秒前
dxg完成签到,获得积分10
6秒前
sys549发布了新的文献求助10
7秒前
清图发布了新的文献求助10
7秒前
泡泡完成签到 ,获得积分10
7秒前
科研通AI5应助光亮靖琪采纳,获得10
7秒前
ac完成签到,获得积分10
7秒前
8秒前
施宛儿完成签到 ,获得积分10
8秒前
cmx发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
Billy应助zhou采纳,获得30
10秒前
10秒前
11223344完成签到,获得积分20
10秒前
12秒前
豆豆发布了新的文献求助10
12秒前
tianyulu完成签到,获得积分10
13秒前
JustinLiu完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274