A lightweight SOD-YOLOv5n model-based winter jujube detection and counting method deployed on Android

Android(操作系统) 计算机科学 Android应用程序 人工智能 嵌入式系统 模拟 工程类 操作系统
作者
Yu Chen,Junzhe Feng,Zhouzhou Zheng,Jiapan Guo,Yaohua Hu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108701-108701
标识
DOI:10.1016/j.compag.2024.108701
摘要

Accurately detecting and counting winter jujubes during the initial ripening stages are crucial for estimating yields and devising preemptive harvesting strategies. However, it can be challenging to accurately detect and count winter jujubes in orchards due to factors such as complex weather conditions and the potential for mutual obscuring between leaves and jujubes. In this study, we propose a lightweight small object detection YOLOv5n (SOD-YOLOv5n) model based on the YOLOv5n model for detecting and counting winter jujubes. The improvements to the model include using SPD-Conv to replace strided convolution and pooling layers to better detect small targets and low-resolution images. Then the upsampling algorithm of YOLOv5n is optimized using the content-aware reassembly of features (CARAFE) module, which enables adaptive and optimized kernel recombination at different locations, resulting in improved performance. Finally, a lightweight convolution technique, GSConv, is used in the neck to reduce the model size and maintain high accuracy. The experimental results show that the SOD-YOLOv5n model has higher counting accuracy than the YOLOv5n model, with improvements of 2.40 %, 1.80 %, and 3.00 % in precision, recall, and mAP, respectively, and a reduction of 9.11 % and 5.30 % in RMSE and MAPE, respectively. The size of the SOD-YOLOv5n model is 3.64 MB, which is reduced by 16.51 % using float16 quantization. The quantized model is used to build an app named JujubeDetector. We propose a method for counting winter jujubes based on this app, and we obtain a root mean square error (RMSE) of 1.46, coefficient of determination (R2) of 0.97, and detection time of 30 ms-90 ms from experiments in orchards. Our approach can effectively meet the requirements for real-time detecting and counting winter jujubes and provide a reference for detecting and counting other small object fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
背后中心完成签到,获得积分10
1秒前
1秒前
2秒前
登山人发布了新的文献求助10
3秒前
两是ssyycc发布了新的文献求助10
5秒前
afrex发布了新的文献求助30
7秒前
天天开心完成签到 ,获得积分10
7秒前
彭于晏应助轩子墨采纳,获得10
8秒前
gloval完成签到,获得积分10
9秒前
科研通AI5应助小旺仔采纳,获得10
10秒前
耗子侠完成签到,获得积分10
12秒前
倒立才能看文献完成签到,获得积分10
12秒前
13秒前
13秒前
你好这位仁兄完成签到,获得积分10
15秒前
Tiwiiw完成签到 ,获得积分10
16秒前
16秒前
19秒前
19秒前
登山人发布了新的文献求助10
20秒前
22秒前
23秒前
一叶扁舟完成签到,获得积分10
23秒前
尘扬发布了新的文献求助10
24秒前
探讨发布了新的文献求助10
24秒前
26秒前
科研通AI5应助地表飞猪采纳,获得10
27秒前
28秒前
29秒前
gudu完成签到,获得积分10
29秒前
传奇3应助登山人采纳,获得10
29秒前
WSND完成签到,获得积分10
29秒前
30秒前
在水一方应助探讨采纳,获得10
31秒前
传奇3应助gfbh采纳,获得10
31秒前
Anna完成签到,获得积分10
33秒前
33秒前
赘婿应助WSND采纳,获得10
34秒前
Yoke发布了新的文献求助10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742