Critical roles of S100A12, MMP9, and PRTN3 in sepsis diagnosis: Insights from multiple microarray data analyses

MMP9公司 微阵列 微阵列分析技术 败血症 计算生物学 生物信息学 生物 免疫学 基因 基因表达 遗传学 下调和上调
作者
Wenyuan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108222-108222 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108222
摘要

Sepsis, characterized by systemic inflammatory response syndrome and life-threatening organ dysfunction, remains a significant global cause of disability and death. Despite its impact, reliable biomarkers for sepsis diagnosis are yet to be identified. This study aims to investigate and identify key genes and pathways in sepsis through the analysis of multiple microarray datasets, providing potential treatment targets for future clinical trials. Two independent gene expression profiles (GSE54514 and GSE69528) were downloaded from the Gene Expression Omnibus (GEO) database. After merging and batch normalization, differentially expressed genes (DEGs) were obtained using the "limma" package. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were performed using "R" software. A Protein-Protein Interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING). The top 10 hub genes were identified using Cytoscape. A Nomogram model for predicting sepsis occurrence was constructed and evaluated. Bioinformatic analysis of 210 sepsis and 91 control blood samples identified 72 DEGs. GO analyses revealed associations with immune response processes. GSEA indicated involvement in key signaling pathways. S100A12, MMP9, and PRTN3 were identified as independent risk factors for sepsis. This study unveils critical genes and pathways in sepsis through bioinformatic methods. S100A12, MMP9, and PRTN3 may play essential roles in the immune response to infection, influencing sepsis prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁青寒发布了新的文献求助10
1秒前
gf完成签到,获得积分20
1秒前
小胡发布了新的文献求助10
1秒前
王博林发布了新的文献求助10
2秒前
Jasper应助猪猪hero采纳,获得10
2秒前
2秒前
蓝天0812完成签到,获得积分10
2秒前
WYF1996完成签到,获得积分20
2秒前
wanci应助惠惠采纳,获得10
3秒前
小肉包发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
DJ发布了新的文献求助10
4秒前
上官蔚蓝发布了新的文献求助10
4秒前
JamesPei应助专注的曼寒采纳,获得10
4秒前
polkmn完成签到,获得积分10
4秒前
4秒前
彩色小鸽子完成签到,获得积分10
5秒前
筱姐姐发布了新的文献求助10
5秒前
5秒前
科目三应助GHJ采纳,获得10
5秒前
Jasper应助小肉包采纳,获得10
7秒前
jujumaomao完成签到,获得积分10
7秒前
122发布了新的文献求助10
7秒前
7秒前
安眠药完成签到 ,获得积分10
8秒前
杨杨关注了科研通微信公众号
8秒前
Suaia完成签到,获得积分10
8秒前
闪闪的荟完成签到,获得积分10
8秒前
姜且发布了新的文献求助10
8秒前
8秒前
9秒前
千风完成签到,获得积分10
9秒前
fys完成签到,获得积分10
9秒前
9秒前
9秒前
自由发布了新的文献求助10
10秒前
优雅依玉发布了新的文献求助10
10秒前
Shaw发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887