Constructing a personalized prognostic risk model for colorectal cancer using machine learning and multi‐omics approach based on epithelial–mesenchymal transition‐related genes

组学 结直肠癌 MMP1型 上皮-间质转换 生物信息学 机器学习 基因 计算生物学 医学 癌症 肿瘤科 计算机科学 生物 内科学 基因表达 转移 生物化学
作者
Shuze Zhang,Wanli Fan,He Dong
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1)
标识
DOI:10.1002/jgm.3660
摘要

Abstract The progression and the metastatic potential of colorectal cancer (CRC) are intricately linked to the epithelial–mesenchymal transition (EMT) process. The present study harnesses the power of machine learning combined with multi‐omics data to develop a risk stratification model anchored on EMT‐associated genes. The aim is to facilitate personalized prognostic assessments in CRC. We utilized publicly accessible gene expression datasets to pinpoint EMT‐associated genes, employing a CoxBoost algorithm to sift through these genes for prognostic significance. The resultant model, predicated on gene expression levels, underwent rigorous independent validation across various datasets. Our model demonstrated a robust capacity to segregate CRC patients into distinct high‐ and low‐risk categories, each correlating with markedly different survival probabilities. Notably, the risk score emerged as an independent prognostic indicator for CRC. High‐risk patients were characterized by an immunosuppressive tumor milieu and a heightened responsiveness to certain chemotherapeutic agents, underlining the model's potential in steering tailored oncological therapies. Moreover, our research unearthed a putative repressive interaction between the long non‐coding RNA PVT1 and the EMT‐associated genes TIMP1 and MMP1, offering new insights into the molecular intricacies of CRC. In essence, our research introduces a sophisticated risk model, leveraging machine learning and multi‐omics insights, which accurately prognosticates outcomes for CRC patients, paving the way for more individualized and effective oncological treatment paradigms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的茗发布了新的文献求助30
1秒前
1秒前
3秒前
orixero应助Jolin采纳,获得10
3秒前
3秒前
3秒前
Eliauk完成签到 ,获得积分10
4秒前
4秒前
你键盘哥完成签到,获得积分10
4秒前
5秒前
Akim应助雨田采纳,获得10
5秒前
豆豆发布了新的文献求助30
6秒前
如约而至发布了新的文献求助10
6秒前
yiyiluo发布了新的文献求助10
7秒前
小二郎应助唐笑采纳,获得10
8秒前
9秒前
9秒前
9秒前
熊宇完成签到,获得积分10
10秒前
Owen应助mmnn采纳,获得10
12秒前
14秒前
14秒前
15秒前
17秒前
19秒前
20秒前
20秒前
yang发布了新的文献求助10
20秒前
科研通AI5应助Angel采纳,获得10
20秒前
可靠世平发布了新的文献求助10
21秒前
AAAAA发布了新的文献求助10
21秒前
21秒前
xxx完成签到,获得积分10
21秒前
23秒前
彭于晏应助yiyiluo采纳,获得10
23秒前
艾佳发布了新的文献求助10
23秒前
23秒前
23秒前
VVValentin发布了新的文献求助10
24秒前
Jolin发布了新的文献求助10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767