CTBANet: Convolution transformers and bidirectional attention for medical image segmentation

分割 人工智能 计算机科学 变压器 卷积神经网络 联营 模式识别(心理学) 图像分割 计算机视觉 特征提取 工程类 电压 电气工程
作者
Sha Liu,Li Pan,Yuanming Jian,Yunjiao Lu,Shifang Luo
出处
期刊:alexandria engineering journal [Elsevier BV]
卷期号:88: 133-143
标识
DOI:10.1016/j.aej.2024.01.018
摘要

In the last few years, Transformer has revolutionized the area of medical image segmentation. Several similar studies have used the UNet architecture to combine convolutional neural networks with transformers. However, these approaches fail to account for the speed at which segmentation occurs and the ability to extract features within the Transformer. They fail to consider the fact that changing the shape of the feature maps in a subtle way can be used for rapid extraction of local and global information. To solve the above problems, CTBANet (Convolutional Transformer and Bidirectional Attention Based for Medical Image Segmentation) is proposed, which has two prominent components, CTblock (Convolutional Combined Transformer module) and BAblock (Bidirectional Attentionblock). CTblock integrates the strengths of CNNs and Transformers, enabling it to extract spatial details and global data. In order to improve the speed and accuracy of the model, multi-scale pyramid pooling is embedded into PAM, named APAM (Asymmetric PAM), and strip convolution is embedded into CAM, named ACAM (Asymmetric CAM). Medical image segmentation is a critical issue in the medical field, and the experimental results of the benchmarks show that our model is obviously more accurate and faster than the other methods in segmenting medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助博修采纳,获得30
1秒前
2秒前
4秒前
来ll完成签到,获得积分10
5秒前
5秒前
Dannnn发布了新的文献求助10
6秒前
蓝色发布了新的文献求助10
8秒前
Owen应助滴滴滴采纳,获得10
9秒前
汉堡包应助来ll采纳,获得10
9秒前
10秒前
万能图书馆应助江峰采纳,获得10
10秒前
10秒前
风和日丽发布了新的文献求助30
10秒前
等待的吐司关注了科研通微信公众号
11秒前
12秒前
123完成签到 ,获得积分10
12秒前
小梦完成签到,获得积分10
12秒前
珂伟完成签到,获得积分10
13秒前
Sihan完成签到,获得积分20
15秒前
勤恳逍遥完成签到,获得积分10
16秒前
笔至梦花完成签到 ,获得积分10
16秒前
蓝色发布了新的文献求助10
16秒前
17秒前
小五完成签到 ,获得积分10
19秒前
卞卞发布了新的文献求助10
23秒前
24秒前
吕文晴完成签到 ,获得积分10
25秒前
庸人自扰完成签到,获得积分10
26秒前
蓝色发布了新的文献求助10
27秒前
28秒前
小马甲应助cc采纳,获得10
28秒前
蓝岳洋发布了新的文献求助10
29秒前
30秒前
江峰发布了新的文献求助10
33秒前
我是老大应助啤酒大王采纳,获得10
33秒前
orixero应助KingYugene采纳,获得10
33秒前
西西发布了新的文献求助10
34秒前
37秒前
WaitP应助负责的方盒采纳,获得10
37秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445