Evaluation of an artificial intelligence-based decision support for the detection of cutaneous melanoma in primary care: a prospective real-life clinical trial

医学 前瞻性队列研究 介绍 医学诊断 黑色素瘤 皮肤癌 临床试验 皮肤病科 梅德林 病历 外科 癌症 家庭医学 病理 内科学 法学 癌症研究 政治学
作者
Panagiotis Papachristou,My Söderholm,Jon Pallon,Marina Taloyan,Sam Polesie,John Paoli,C Anderson,Magnus Falk
出处
期刊:British Journal of Dermatology [Oxford University Press]
卷期号:191 (1): 125-133 被引量:8
标识
DOI:10.1093/bjd/ljae021
摘要

Abstract Background Use of artificial intelligence (AI), or machine learning, to assess dermoscopic images of skin lesions to detect melanoma has, in several retrospective studies, shown high levels of diagnostic accuracy on par with – or even outperforming – experienced dermatologists. However, the enthusiasm around these algorithms has not yet been matched by prospective clinical trials performed in authentic clinical settings. In several European countries, including Sweden, the initial clinical assessment of suspected skin cancer is principally conducted in the primary healthcare setting by primary care physicians, with or without access to teledermoscopic support from dermatology clinics. Objectives To determine the diagnostic performance of an AI-based clinical decision support tool for cutaneous melanoma detection, operated by a smartphone application (app), when used prospectively by primary care physicians to assess skin lesions of concern due to some degree of melanoma suspicion. Methods This prospective multicentre clinical trial was conducted at 36 primary care centres in Sweden. Physicians used the smartphone app on skin lesions of concern by photographing them dermoscopically, which resulted in a dichotomous decision support text regarding evidence for melanoma. Regardless of the app outcome, all lesions underwent standard diagnostic procedures (surgical excision or referral to a dermatologist). After investigations were complete, lesion diagnoses were collected from the patients’ medical records and compared with the app’s outcome and other lesion data. Results In total, 253 lesions of concern in 228 patients were included, of which 21 proved to be melanomas, with 11 thin invasive melanomas and 10 melanomas in situ. The app’s accuracy in identifying melanomas was reflected in an area under the receiver operating characteristic (AUROC) curve of 0.960 [95% confidence interval (CI) 0.928–0.980], corresponding to a maximum sensitivity and specificity of 95.2% and 84.5%, respectively. For invasive melanomas alone, the AUROC was 0.988 (95% CI 0.965–0.997), corresponding to a maximum sensitivity and specificity of 100% and 92.6%, respectively. Conclusions The clinical decision support tool evaluated in this investigation showed high diagnostic accuracy when used prospectively in primary care patients, which could add significant clinical value for primary care physicians assessing skin lesions for melanoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助无奈的萍采纳,获得30
2秒前
柚木完成签到,获得积分10
4秒前
精明半双完成签到,获得积分10
6秒前
7秒前
Lucas应助chenchen采纳,获得10
10秒前
12秒前
完美世界应助淡淡夕阳采纳,获得10
13秒前
111完成签到,获得积分10
14秒前
xmhxpz发布了新的文献求助10
15秒前
jj发布了新的文献求助10
15秒前
16秒前
迷路的硬币完成签到 ,获得积分10
17秒前
王yuu完成签到 ,获得积分10
19秒前
chenchen完成签到,获得积分10
22秒前
xmhxpz完成签到,获得积分10
23秒前
科研通AI5应助QDU采纳,获得10
24秒前
爱小妍完成签到,获得积分10
27秒前
舒心的青槐完成签到 ,获得积分10
27秒前
30秒前
平常的毛豆应助开心就好采纳,获得30
30秒前
pluto应助周钰波采纳,获得10
32秒前
鲜艳的访风完成签到,获得积分10
35秒前
36秒前
37秒前
Qiqinnn完成签到 ,获得积分10
37秒前
yang发布了新的文献求助10
39秒前
可爱的函函应助爱小妍采纳,获得10
39秒前
沈海发布了新的文献求助10
45秒前
45秒前
科研小狗完成签到 ,获得积分10
46秒前
小蘑菇应助yang采纳,获得10
46秒前
可爱的函函应助daxiooo11采纳,获得10
49秒前
51秒前
自信的勒发布了新的文献求助10
51秒前
mingyu完成签到,获得积分10
52秒前
SciGPT应助淡淡夕阳采纳,获得10
55秒前
xiaostou完成签到,获得积分10
55秒前
啾一口香菜完成签到 ,获得积分10
57秒前
WW完成签到,获得积分10
57秒前
巴拉巴拉巴拉拉应助mingyu采纳,获得10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563