AgAu-modified quasi-MIL-53 hybrid nanozymes with triple enzyme-like activities for boosting biocatalytic disinfection

金属有机骨架 化学 脱羧 贵金属 氧化脱羧 组合化学 金属 生物化学 催化作用 有机化学 纳米技术 材料科学 吸附
作者
Sheng Zhong,Fayin Mo,Linxi Chen,Weiwei Qin,Luyong Zhang,Jing Lü,Duanping Sun
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:661: 520-532 被引量:6
标识
DOI:10.1016/j.jcis.2024.01.190
摘要

Metal-organic frameworks (MOFs) have great potential for combating pathogenic bacterial infections and are expected to become an alternative to antibiotics. However, organic linkers obstruct and saturate the inorganic nodes of MOF structures, making it challenging to utilize the applied potential of metal centers. Here, we combined controlled ligand decarboxylation with noble metal nanoparticles to rationally remodel MIL-53, resulting in a hybrid nanozyme (AgAu@QMIL-53, AAQM) with excellent multiple enzyme-like activities that both eradicate bacteria and promote diabetic wound healing. Specifically, benefitting from oxidase (OXD)-like and peroxidase (POD)-like activities, AAQM converts oxygen (O2) and hydrogen peroxide (H2O2) into superoxide anion radicals (O2−) and hydroxyl radicals (OH) to eradicate bacteria. In in vitro antibacterial experiments, AAQM exhibited favorable killing efficacy against Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) (>99 %). Notably, due to its superoxide (SOD)-like activity and outstanding reactive nitrogen species (RNS) elimination capacity, AAQM can produce adequate O2 and alleviate oxidative stress in diabetic wounds. Benefiting from the rational modification of MIL-53, the synthesized hybrid nanozyme can effectively kill bacteria while alleviating oxidative stress and ultimately promote infected diabetic wound healing. Overall, this biomimetic enzyme-catalyzed strategy will bring enlightenment to the design of self-antibacterial agents for efficient disinfection and wound healing simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆欢欢乐完成签到 ,获得积分10
1秒前
1秒前
1秒前
dashuaibiu发布了新的文献求助10
1秒前
时尚又蓝发布了新的文献求助10
1秒前
科研通AI5应助mumu采纳,获得10
1秒前
zx关闭了zx文献求助
1秒前
2秒前
充电宝应助爱科研的龙采纳,获得10
2秒前
zxr发布了新的文献求助10
2秒前
wangrblzu应助zhengshanbei采纳,获得10
2秒前
2秒前
谢会会完成签到 ,获得积分10
2秒前
JHGG完成签到,获得积分0
2秒前
Three发布了新的文献求助10
3秒前
3秒前
帕芙芙完成签到,获得积分10
3秒前
Liziuan发布了新的文献求助10
3秒前
4秒前
wdlc完成签到,获得积分10
4秒前
妮妮爱smile完成签到,获得积分10
4秒前
4秒前
gratitude完成签到,获得积分10
4秒前
QQ完成签到 ,获得积分10
4秒前
FlipFlops完成签到,获得积分10
5秒前
5秒前
Gonboo完成签到,获得积分10
6秒前
完美世界应助Okayoooooo采纳,获得10
6秒前
ffy1985发布了新的文献求助10
6秒前
6秒前
胖心怡完成签到,获得积分10
6秒前
Three完成签到,获得积分10
7秒前
7秒前
王晨昕发布了新的文献求助30
7秒前
8秒前
苏苏完成签到,获得积分10
8秒前
9秒前
思策完成签到,获得积分10
9秒前
dyc发布了新的文献求助10
9秒前
徐小锤发布了新的文献求助10
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940