Identification of new psychoactive substances and their metabolites using non-targeted detection with high-resolution mass spectrometry through diagnosing fragment ions/neutral loss analysis

化学 质谱法 色谱法 分辨率(逻辑) 高分辨率 鉴定(生物学) 气相色谱-质谱法 遥感 人工智能 计算机科学 地质学 植物 生物
作者
José Manuel Matey,Félix Zapata,Luis Manuel Menéndez-Quintanal,Gemma Montalvo,Carmen García‐Ruiz
出处
期刊:Talanta [Elsevier BV]
卷期号:265: 124816-124816 被引量:19
标识
DOI:10.1016/j.talanta.2023.124816
摘要

In this study, a novel approach is introduced, merging in silico prediction with a Convolutional Neural Network (CNN) framework for the targeted screening of in vivo metabolites in Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) fingerprints. Initially, three predictive tools, supplemented by literature, identify potential metabolites for target prototypes derived from Traditional Chinese Medicines (TCMs) or functional foods. Subsequently, a CNN is developed to minimize false positives from CWT-based peak detection. The Extracted Ion Chromatogram (EIC) peaks are then annotated using MS-FINDER across three levels of confidence. This methodology focuses on analyzing the metabolic fingerprints of rats administered with "Pericarpium Citri Reticulatae - Fructus Aurantii" (PCR-FA). Consequently, 384 peaks in positive mode and 282 in negative mode were identified as true peaks of probable metabolites. By contrasting these with "blank serum" data, EIC peaks of adequate intensity were chosen for MS/MS fragment analysis. Ultimately, 14 prototypes (including flavonoids and lactones) and 40 metabolites were precisely linked to their corresponding EIC peaks, thereby providing deeper insight into the pharmacological mechanism. This innovative strategy markedly enhances the chemical coverage in the targeted screening of LC-HRMS metabolic fingerprints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
all_right完成签到,获得积分10
1秒前
2秒前
2秒前
积极墨镜完成签到,获得积分10
7秒前
秀丽灵槐发布了新的文献求助10
9秒前
ylq关闭了ylq文献求助
11秒前
无情灯泡发布了新的文献求助10
11秒前
徐若楠发布了新的文献求助20
11秒前
15秒前
xxxzy完成签到,获得积分10
15秒前
16秒前
16秒前
Jasper应助斑马采纳,获得10
17秒前
大白完成签到 ,获得积分10
18秒前
20秒前
xuruiwade1发布了新的文献求助10
20秒前
小龙发布了新的文献求助10
21秒前
24秒前
26秒前
肖耶啵应助nicholasgxz采纳,获得10
26秒前
AnitaAdal应助安小野采纳,获得10
26秒前
ylq关闭了ylq文献求助
27秒前
27秒前
满意的曼寒应助徐若楠采纳,获得20
29秒前
吴文章完成签到 ,获得积分10
29秒前
斑马发布了新的文献求助10
32秒前
战神小新完成签到,获得积分10
33秒前
34秒前
丘比特应助俭朴的乐巧采纳,获得10
35秒前
35秒前
111完成签到,获得积分10
36秒前
38秒前
ylq关闭了ylq文献求助
39秒前
41秒前
41秒前
43秒前
43秒前
43秒前
动听松思发布了新的文献求助10
44秒前
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818608
求助须知:如何正确求助?哪些是违规求助? 3361624
关于积分的说明 10413632
捐赠科研通 3079880
什么是DOI,文献DOI怎么找? 1693398
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248