Equivalent circuit simulated deep network architecture and transfer learning for remaining useful life prediction of lithium-ion batteries

计算机科学 学习迁移 电池(电) 辍学(神经网络) 人工神经网络 人工智能 等效电路 机器学习 钥匙(锁) 电压 工程类 功率(物理) 电气工程 物理 计算机安全 量子力学
作者
Cong Dai Nguyen,Suk Joo Bae
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:71: 108042-108042 被引量:27
标识
DOI:10.1016/j.est.2023.108042
摘要

Conventional approaches for predicting remaining useful life (RUL) of lithium-ion batteries (LiBs) have limited applicability due to their requirements of large training data. We address this issue by proposing a novel framework comprising of a feature construction technique using the charging voltages of a battery and a transfer learning architecture to prognosticate the state-of-health (SoH) of the LiB. The transfer learning approach uses a deep neural network architecture that combines equivalent circuit simulated (ECS) layers and a fine-tuning network hierarchy. The ECS-layers model the electrical equivalent circuit of the LiB converting extracted informative features to the ohmic resistance parameters proportional to a LiB's SoH. The fine-tuning architecture constructed by stacking the long short-term memory (LSTM), dropout, fully connected and regression layers determines the changes in the ohmic resistance during battery operation. The predictive performance of the proposed framework is enhanced via transfer learning. The comparison between the proposed framework and existing state-of-the-art models based on multiple battery datasets shows its better predictive performance, particularly, when the training data are sparse. The applicative example demonstrates that the proposed modeling framework allows more accurate prediction of actual degradation processes of LiBs before its end-of-life state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhanglh123完成签到,获得积分10
刚刚
wang完成签到,获得积分10
1秒前
xifeng完成签到,获得积分10
2秒前
orixero应助present采纳,获得10
3秒前
3秒前
3秒前
Kiry完成签到 ,获得积分10
3秒前
4秒前
kk发布了新的文献求助50
4秒前
晴天小土豆完成签到 ,获得积分10
4秒前
重生之学术裁缝逐梦学术圈完成签到,获得积分10
5秒前
5秒前
5秒前
生动梦松应助暮鼓采纳,获得10
6秒前
神勇雨双发布了新的文献求助10
6秒前
7秒前
7秒前
MikiWu发布了新的文献求助10
8秒前
领导范儿应助后笑晴采纳,获得10
8秒前
9秒前
隐形曼青应助xiaobai采纳,获得10
9秒前
常芹发布了新的文献求助10
9秒前
瑶瑶完成签到 ,获得积分10
9秒前
万能图书馆应助ZY采纳,获得10
9秒前
希望天下0贩的0应助AGuang采纳,获得10
10秒前
orixero应助LJ采纳,获得10
11秒前
12秒前
Dean应助kexing采纳,获得30
13秒前
田様应助神勇雨双采纳,获得10
13秒前
乐多发布了新的文献求助10
13秒前
13秒前
贪玩海之发布了新的文献求助10
14秒前
英俊的铭应助常芹采纳,获得10
14秒前
乐观的科研小狗完成签到,获得积分20
15秒前
16秒前
present发布了新的文献求助10
16秒前
16秒前
好运连连完成签到 ,获得积分10
16秒前
16秒前
二巨头完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4465481
求助须知:如何正确求助?哪些是违规求助? 3927524
关于积分的说明 12188174
捐赠科研通 3580580
什么是DOI,文献DOI怎么找? 1967533
邀请新用户注册赠送积分活动 1005976
科研通“疑难数据库(出版商)”最低求助积分说明 900226