Investigation of S1046 profile bladed vertical axis wind turbine and artificial intelligence-based performance evaluation

Chord(对等) 翼型 涡轮机 线性回归 航程(航空) 随机森林 涡轮叶片 决策树 回归分析 数学 决定系数 湍流 计算机科学 统计 人工智能 工程类 结构工程 气象学 物理 机械工程 航空航天工程 分布式计算
作者
Süleyman Tekşin,Selahaddin Orhan Akansu,Nuh Azginoglu,Yahya Erkan Akansu,İbrahim Develı
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:45 (3): 8771-8790
标识
DOI:10.1080/15567036.2023.2230930
摘要

It is very important to determine the parameters affecting the performance of the Darrieus-type wind turbine and its effects. In particular, it should be specified at which TSR value the peak power coefficient is obtained. In this study, standard and modified S1046 airfoils and aspect ratios (H/D), angle of attack (AoA), turbulent/non-turbulent flow (WT), number of blades (N), and chord length (C) were tested. Then, four different machines learning-based multi-output regression models (Decision Tree, Linear Regression, K-Nearest Neighbors, and Random Forest) were trained to make performance predictions with the data obtained from the evaluated test setup. Thirdly, feature selection based on the Random Forest algorithm, which is the best performing multi-output regression model, was performed using data due to changing parameter values on the established system. The importance of the parameters was determined. The operating range of the system was at relatively low TSR values. When analyzing the blade profile, the modified blade version performed better in certain combinations compared to the standard profile. Maximum power coefficient (Cp) was obtained from the modified turbine structure with 5 degrees of attack angle, H/D = 1.85, and C = 60 mm. The present study aims to increase the turbine’s power coefficient and aims to predict results as power coefficient without doing many different experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ing关闭了ing文献求助
1秒前
玥玥完成签到,获得积分10
1秒前
1秒前
2秒前
璇22发布了新的文献求助10
3秒前
可爱的函函应助可爱安筠采纳,获得10
4秒前
6秒前
李木头完成签到,获得积分10
6秒前
稳重向南发布了新的文献求助10
6秒前
6秒前
7秒前
不想起昵称完成签到 ,获得积分10
8秒前
斯文败类应助快乐富采纳,获得10
8秒前
XYS发布了新的文献求助10
9秒前
9秒前
璇22完成签到,获得积分10
10秒前
LZL1026发布了新的文献求助10
10秒前
星辰大海应助稳重向南采纳,获得10
12秒前
Lin完成签到 ,获得积分10
12秒前
lili完成签到 ,获得积分10
13秒前
13秒前
无恙发布了新的文献求助10
14秒前
Hello应助EricYang采纳,获得10
14秒前
程程发布了新的文献求助10
14秒前
滴迪氐媂发布了新的文献求助10
14秒前
15秒前
16秒前
哎哟你干嘛完成签到,获得积分10
17秒前
21秒前
22秒前
瑟蕾娜完成签到 ,获得积分10
23秒前
24秒前
SciGPT应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842773
求助须知:如何正确求助?哪些是违规求助? 3384798
关于积分的说明 10537368
捐赠科研通 3105360
什么是DOI,文献DOI怎么找? 1710232
邀请新用户注册赠送积分活动 823571
科研通“疑难数据库(出版商)”最低求助积分说明 774137