Spatial-spectral attention-enhanced Res-3D-OctConv for corn and weed identification utilizing hyperspectral imaging and deep learning

高光谱成像 人工智能 模式识别(心理学) 主成分分析 计算机科学 残余物 卷积神经网络 冗余(工程) 空间分析 特征提取 深度学习 支持向量机 数学 算法 统计 操作系统
作者
Zhihua Diao,Peiliang Guo,Baohua Zhang,Jiaonan Yan,Zhendong He,Suna Zhao,Chunjiang Zhao,Jingcheng Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108092-108092 被引量:34
标识
DOI:10.1016/j.compag.2023.108092
摘要

Corn production is an important basis to ensure the world food security, and weeds in the field will cause corn production decline. Therefore, in order to quickly recognize corn and weed in the field, a model was proposed by combining hyperspectral image with deep learning method. However, there are some problems in hyperspectral image, such as high redundancy of adjacent spectra and insufficient feature information extraction. In order to solve the above problems, the four principal components based on principal component analysis (PCA) were firstly extracted in this paper, so as to decrease the information redundancy between adjacent spectra. Secondly, the residual three-dimensional octave convolution (Res-3D-OctConv) was used to excavate the spatial information from the frequency components, while taking into account the spectral information. Finally, spatial and spectral attention models were introduced to highlight important spatial information and spectral information. At the same time, the spatial information and spectral information was integrated by cross fusion. Experimental results show that the recognition accuracy of the proposed model is 98.56 %, which is 8.65 % and 10.20 % higher than that of k-nearest neighbor (KNN) and support vector machine (SVM) respectively. The recognition result of the proposed model is further compared with that of 3D residual network (3D-ResNet) and 3D convolutional neural network (3D-CNN), and the recognition precision of the proposed model in this paper is increased by 1.40 % and 1.02 % compared with 3D-CNN and 3D-ResNet, respectively. The results show that the proposed model can better recognize the hyperspectral images of corn and weed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江河完成签到,获得积分10
2秒前
黛西完成签到 ,获得积分10
3秒前
松林发布了新的文献求助30
4秒前
大道独行发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
科目三应助susu采纳,获得30
6秒前
11关闭了11文献求助
8秒前
大个应助淡淡智宸采纳,获得10
9秒前
zhuang发布了新的文献求助10
9秒前
万事遂意发布了新的文献求助10
10秒前
14秒前
搜集达人应助llllliu采纳,获得10
14秒前
852应助风语村采纳,获得10
14秒前
鱼遇发布了新的文献求助10
14秒前
小蘑菇应助多多采纳,获得10
14秒前
感动新烟完成签到 ,获得积分10
14秒前
Hello应助大道独行采纳,获得10
15秒前
15秒前
16秒前
仪仪完成签到,获得积分10
17秒前
18秒前
顺心的豪完成签到,获得积分10
19秒前
iris2333发布了新的文献求助10
21秒前
淡淡智宸发布了新的文献求助10
22秒前
杰杰大叔发布了新的文献求助10
22秒前
大道独行完成签到,获得积分20
23秒前
花开花落花无悔完成签到 ,获得积分10
23秒前
23秒前
领导范儿应助万事遂意采纳,获得10
24秒前
公维浩发布了新的文献求助10
24秒前
傻子完成签到,获得积分10
25秒前
田様应助水若冰寒采纳,获得10
28秒前
zhuang完成签到 ,获得积分10
29秒前
gjy关注了科研通微信公众号
31秒前
文文完成签到,获得积分10
31秒前
33秒前
文文发布了新的文献求助10
34秒前
酷波er应助杰杰大叔采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312