Sulfuretted Li- and Mn-rich cathode material with epitaxial spinel stabilizer for ultra-long cycle Li-ion battery

尖晶石 材料科学 阴极 电化学 化学工程 锂(药物) 电池(电) 化学 电极 冶金 物理化学 量子力学 内分泌学 功率(物理) 物理 工程类 医学
作者
Wanyun Li,Bangchuan Zhao,Jin Bai,Hongyang Ma,Peiyao Wang,Yunjie Mao,Ke Xiao,Xuelian Wang,Peng Tong,Xuebin Zhu,Yuping Sun
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:454: 140398-140398 被引量:23
标识
DOI:10.1016/j.cej.2022.140398
摘要

• Sulfuretted Li- and Mn-Rich cathode material with epitaxial spinel stabilizer is successfully constructed; • The introduced spinel phase stabilizer was lattice-compatible with Li- and Mn-Rich; • S incorporation can effectively accelerate the lithium ions diffusion and suppress the undesired oxygen redox; • The electrochemical performance was greatly improved by epitaxial spinel and S doping. The utilization of Li- and Mn-rich layered cathode materials is an effective route to break the energy density bottleneck of lithium-ion batteries for practical applications. However, these materials always suffer from severe structural degradation and oxygen loss during long-term cycling process. Herein, the integrated modification was realized by epitaxial spinel phase film grown on the surface of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 (LMR) and proper S elements doping to obtain outstanding electrochemical performance. The introduced spinel phase stabilizer can enhance Li ion conductivity and reduce the particle cracks and phase collapse during repeated cycling processes. The formation of TM-S bond configuration induced by S incorporation can effectively accelerate the lithium ions diffusion and suppress the undesired oxygen redox. Therefore, the LMRS@S cathode displays an excellent electrochemical performance: ultra-long-cycling stability with capacity retention of 82.1% after 600 cycles at 1 C, higher initial Coulomb efficiency (84.7% vs. 76.3%) and excellent full cell performance (81.7% capacity retention after 140 cycles). The synergistic strategies with surface stabilizer and S- incorporation affords a promising way to design superior cycling performance LMR cathode material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tooty发布了新的文献求助10
刚刚
1秒前
sunshine发布了新的文献求助10
1秒前
yelis完成签到,获得积分10
1秒前
3秒前
骨科小白发布了新的文献求助10
3秒前
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
地表飞猪应助科研通管家采纳,获得10
5秒前
地表飞猪应助科研通管家采纳,获得10
5秒前
七慕凉应助科研通管家采纳,获得10
5秒前
地表飞猪应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
8秒前
佛系发布了新的文献求助10
9秒前
Parotodus完成签到,获得积分10
10秒前
小马甲应助高大的从阳采纳,获得10
11秒前
吕子尚发布了新的文献求助10
11秒前
Serrinixia发布了新的文献求助10
12秒前
欢喜自中完成签到,获得积分10
13秒前
19秒前
HY发布了新的文献求助20
20秒前
20秒前
22秒前
今后应助树123采纳,获得10
23秒前
24秒前
idynamics发布了新的文献求助10
25秒前
25秒前
SYLH应助splash采纳,获得10
27秒前
SYLH应助splash采纳,获得10
27秒前
SYLH应助splash采纳,获得10
27秒前
SYLH应助splash采纳,获得10
27秒前
菠萝炒饭应助splash采纳,获得10
27秒前
WZQ发布了新的文献求助10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798216
求助须知:如何正确求助?哪些是违规求助? 3343654
关于积分的说明 10317211
捐赠科研通 3060416
什么是DOI,文献DOI怎么找? 1679497
邀请新用户注册赠送积分活动 806655
科研通“疑难数据库(出版商)”最低求助积分说明 763282