Prediction of Response of Hepatocellular Carcinoma to Radioembolization: Machine Learning Using Preprocedural Clinical Factors and MR Imaging Radiomics

随机森林 无线电技术 医学 特征选择 接收机工作特性 肝细胞癌 支持向量机 威尔科克森符号秩检验 逻辑回归 四分位间距 磁共振成像 人工智能 组内相关 特征(语言学) 机器学习 核医学 放射科 模式识别(心理学) 计算机科学 内科学 曼惠特尼U检验 外科 语言学 哲学 心理测量学 临床心理学
作者
Okan İnce,Hakan Önder,Mehmet Gençtürk,Hakan Cebeci,Jafar Golzarian,Shamar Young
出处
期刊:Journal of Vascular and Interventional Radiology [Elsevier BV]
卷期号:34 (2): 235-243.e3 被引量:6
标识
DOI:10.1016/j.jvir.2022.11.004
摘要

To create and evaluate the ability of machine learning-based models with clinicoradiomic features to predict radiologic response after transarterial radioembolization (TARE).82 treatment-naïve patients (65 responders and 17 nonresponders; median age: 65 years; interquartile range: 11) who underwent selective TARE were included. Treatment responses were evaluated using the European Association for the Study of the Liver criteria at 3-month follow-up. Laboratory, clinical, and procedural information were collected. Radiomic features were extracted from pretreatment contrast-enhanced T1-weighted magnetic resonance images obtained within 3 months before TARE. Feature selection consisted of intraclass correlation, followed by Pearson correlation analysis and finally, sequential feature selection algorithm. Support vector machine, logistic regression, random forest, and LightGBM models were created with both clinicoradiomic features and clinical features alone. Performance metrics were calculated with a nested 5-fold cross-validation technique. The performances of the models were compared by Wilcoxon signed-rank and Friedman tests.In total, 1,128 features were extracted. The feature selection process resulted in 12 features (8 radiomic and 4 clinical features) being included in the final analysis. The area under the receiver operating characteristic curve values from the support vector machine, logistic regression, random forest, and LightGBM models were 0.94, 0.94, 0.88, and 0.92 with clinicoradiomic features and 0.82, 0.83, 0.82, and 0.83 with clinical features alone, respectively. All models exhibited significantly higher performances when radiomic features were included (P = .028, .028, .043, and .028, respectively).Based on clinical and imaging-based information before treatment, machine learning-based clinicoradiomic models demonstrated potential to predict response to TARE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北风应助PPP采纳,获得10
1秒前
joker完成签到,获得积分10
1秒前
飞龙在天发布了新的文献求助10
1秒前
Lucas应助xiaoxi采纳,获得10
2秒前
2秒前
3秒前
fgd完成签到,获得积分10
4秒前
暴力M发布了新的文献求助10
7秒前
程风破浪发布了新的文献求助10
8秒前
燕儿完成签到,获得积分10
10秒前
可爱的函函应助小谢同学采纳,获得10
11秒前
顺其自然_666888完成签到,获得积分10
11秒前
李多多完成签到,获得积分10
11秒前
格格完成签到 ,获得积分10
12秒前
猕猴桃完成签到,获得积分10
13秒前
14秒前
15秒前
Ava应助洁净白容采纳,获得10
16秒前
Hsyin发布了新的文献求助10
19秒前
ssc完成签到,获得积分10
19秒前
20秒前
想人陪的采蓝完成签到,获得积分10
20秒前
22秒前
22秒前
小谢同学发布了新的文献求助10
24秒前
yang完成签到,获得积分10
24秒前
25秒前
NeuroYan发布了新的文献求助50
28秒前
Curry完成签到 ,获得积分10
28秒前
29秒前
32秒前
34秒前
博qb完成签到,获得积分10
34秒前
飞龙在天完成签到,获得积分10
35秒前
985博士发布了新的文献求助10
35秒前
尊敬寒松发布了新的文献求助10
38秒前
wanci应助yangyangyang采纳,获得10
38秒前
从容问薇完成签到,获得积分10
40秒前
搜集达人应助Jessica采纳,获得30
40秒前
985博士完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783118
求助须知:如何正确求助?哪些是违规求助? 3328459
关于积分的说明 10236592
捐赠科研通 3043558
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119