Prediction of Response of Hepatocellular Carcinoma to Radioembolization: Machine Learning Using Preprocedural Clinical Factors and MR Imaging Radiomics

随机森林 无线电技术 医学 特征选择 接收机工作特性 肝细胞癌 支持向量机 威尔科克森符号秩检验 逻辑回归 四分位间距 磁共振成像 人工智能 组内相关 特征(语言学) 机器学习 核医学 放射科 模式识别(心理学) 计算机科学 内科学 曼惠特尼U检验 外科 语言学 哲学 心理测量学 临床心理学
作者
Okan İnce,Hakan Önder,Mehmet Gençtürk,Hakan Cebeci,Jafar Golzarian,Shamar Young
出处
期刊:Journal of Vascular and Interventional Radiology [Elsevier BV]
卷期号:34 (2): 235-243.e3 被引量:11
标识
DOI:10.1016/j.jvir.2022.11.004
摘要

To create and evaluate the ability of machine learning-based models with clinicoradiomic features to predict radiologic response after transarterial radioembolization (TARE).82 treatment-naïve patients (65 responders and 17 nonresponders; median age: 65 years; interquartile range: 11) who underwent selective TARE were included. Treatment responses were evaluated using the European Association for the Study of the Liver criteria at 3-month follow-up. Laboratory, clinical, and procedural information were collected. Radiomic features were extracted from pretreatment contrast-enhanced T1-weighted magnetic resonance images obtained within 3 months before TARE. Feature selection consisted of intraclass correlation, followed by Pearson correlation analysis and finally, sequential feature selection algorithm. Support vector machine, logistic regression, random forest, and LightGBM models were created with both clinicoradiomic features and clinical features alone. Performance metrics were calculated with a nested 5-fold cross-validation technique. The performances of the models were compared by Wilcoxon signed-rank and Friedman tests.In total, 1,128 features were extracted. The feature selection process resulted in 12 features (8 radiomic and 4 clinical features) being included in the final analysis. The area under the receiver operating characteristic curve values from the support vector machine, logistic regression, random forest, and LightGBM models were 0.94, 0.94, 0.88, and 0.92 with clinicoradiomic features and 0.82, 0.83, 0.82, and 0.83 with clinical features alone, respectively. All models exhibited significantly higher performances when radiomic features were included (P = .028, .028, .043, and .028, respectively).Based on clinical and imaging-based information before treatment, machine learning-based clinicoradiomic models demonstrated potential to predict response to TARE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
支雨泽发布了新的文献求助10
1秒前
hsy309发布了新的文献求助10
3秒前
糟糕的铁锤完成签到,获得积分0
5秒前
机电虎发布了新的文献求助10
5秒前
卡卡西应助桶治世界采纳,获得30
5秒前
邓代容发布了新的文献求助10
5秒前
5秒前
nkdailingyun完成签到,获得积分10
6秒前
6秒前
卡卡西应助大大哈哈采纳,获得10
7秒前
李双艳发布了新的文献求助10
7秒前
8秒前
酷波er应助认真台灯采纳,获得10
9秒前
孙燕应助酷酷访彤采纳,获得10
10秒前
12秒前
欢呼的丁真完成签到,获得积分10
13秒前
VICKY发布了新的文献求助10
13秒前
吴迎港发布了新的文献求助10
13秒前
ZzZz发布了新的文献求助10
14秒前
kelite发布了新的文献求助10
15秒前
欢呼的鲂完成签到,获得积分10
16秒前
lxy发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
selena完成签到 ,获得积分10
20秒前
研友_Lmb15n完成签到,获得积分10
21秒前
CipherSage应助飞快的紫雪采纳,获得10
21秒前
VICKY完成签到,获得积分20
23秒前
Li发布了新的文献求助10
23秒前
CipherSage应助yuguoqwq采纳,获得10
23秒前
烟花应助jinzhen采纳,获得10
24秒前
ShiqiLiu发布了新的文献求助10
24秒前
仔wang完成签到,获得积分10
24秒前
昏睡的蟠桃应助会飞的鱼采纳,获得30
25秒前
25秒前
26秒前
总攻大人完成签到,获得积分10
27秒前
27秒前
Elaine_fy完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938876
求助须知:如何正确求助?哪些是违规求助? 3484661
关于积分的说明 11029195
捐赠科研通 3214604
什么是DOI,文献DOI怎么找? 1776765
邀请新用户注册赠送积分活动 862996
科研通“疑难数据库(出版商)”最低求助积分说明 798629