已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer

无线电技术 乳腺癌 腋窝淋巴结 人工智能 医学 淋巴结 深度学习 磁共振成像 机器学习 淋巴结转移 放射科 计算机科学 转移 癌症 内科学
作者
Xue Li,Lifeng Yang,Xiong Jiao
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (7): 1281-1287 被引量:49
标识
DOI:10.1016/j.acra.2022.10.015
摘要

Rationale and Objectives

Accurate identification of axillary lymph node (ALN) status in breast cancer patients is important for determining treatment options and avoiding axillary overtreatments. Our study aims to comprehensively compare the performance of the traditional radiomics model, deep learning radiomics model, and the fusion models in evaluating breast cancer ALN status based on dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI) images.

Materials and Methods

The handcrafted radiomics features and deep features were extracted from 3062 DCE-MRI images. The feature selection was performed by applying mutual information and feature recursive elimination algorithms. The traditional radiomics model and deep learning radiomics model were built using the optimal features and machine learning classifiers, respectively. The fusion models for distinguishing axillary lymph node status were constructed using two fusion strategies. The performance of the models with MRI-reported lymphadenopathy or suspicious nodes to evaluate axillary lymph node status was also compared.

Results

The decision fusion model, with the integration of the radiomics features and deep learning features at the decision level, achieved an area under the curve (AUC) of 0.91 (95% confidence interval (CI): 0.879-0.937), which was higher than that of the traditional radiomics model and deep learning radiomics model. The results of the decision fusion model with clinical characteristic yielded an AUC of 0.93 (95% CI: 0.899-0.951), which was also superior to other models incorporating clinical characteristic.

Conclusion

This study demonstrates the effectiveness of the fusion models for predicting axillary lymph node metastasis in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长安完成签到 ,获得积分10
2秒前
彧辰完成签到 ,获得积分10
4秒前
6666发布了新的文献求助10
7秒前
zhoupeng完成签到,获得积分10
8秒前
12秒前
平常芷波完成签到 ,获得积分10
18秒前
19秒前
沉静的万天完成签到 ,获得积分10
23秒前
24秒前
小羽毛完成签到,获得积分10
24秒前
李彦完成签到,获得积分20
25秒前
多看文献发布了新的文献求助10
30秒前
Mcdull发布了新的文献求助10
30秒前
31秒前
31秒前
33秒前
37秒前
39秒前
lucy_sar发布了新的文献求助10
40秒前
Harmonie完成签到,获得积分10
42秒前
隐形曼青应助好天气采纳,获得10
42秒前
小羽毛发布了新的文献求助10
43秒前
Orange应助Harmonie采纳,获得10
44秒前
吴254完成签到,获得积分10
44秒前
zhangj696发布了新的文献求助10
45秒前
leibaozun完成签到 ,获得积分10
46秒前
52秒前
元谷雪应助油柑美式采纳,获得10
53秒前
下文献完成签到,获得积分10
53秒前
lucy_sar完成签到,获得积分10
56秒前
好天气发布了新的文献求助10
58秒前
bruce完成签到,获得积分10
59秒前
回忆敌不过尿意完成签到 ,获得积分10
1分钟前
Lore发布了新的文献求助20
1分钟前
liao应助科研通管家采纳,获得30
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
ccm应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558211
求助须知:如何正确求助?哪些是违规求助? 4643217
关于积分的说明 14670718
捐赠科研通 4584657
什么是DOI,文献DOI怎么找? 2515021
邀请新用户注册赠送积分活动 1489124
关于科研通互助平台的介绍 1459766