EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism

计算机科学 判别式 脑电图 人工智能 模式识别(心理学) 卷积神经网络 分类器(UML) 图形 邻接表 算法 理论计算机科学 心理学 精神科
作者
Lin Feng,Cheng Cheng,Mingyan Zhao,Huiyuan Deng,Yong Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5406-5417 被引量:73
标识
DOI:10.1109/jbhi.2022.3198688
摘要

The dynamic uncertain relationship among each brain region is a necessary factor that limits EEG-based emotion recognition. It is a thought-provoking problem to availably employ time-varying spatial and temporal characteristics from multi-channel electroencephalogram (EEG) signals. Although deep learning has made remarkable achievements in emotion recognition, the biological topological information among brain regions does not fully exploit, which is vital for EEG-based emotion recognition. In response to this problem, we design a hybrid model called ST-GCLSTM, which comprises a spatial-graph convolutional network (SGCN) module and an attention-enhanced bi-directional Long Short-Term Memory (LSTM) module. The main advantage of ST-GCLSTM is that it can consider the biological topology information of each brain region to extract representative spatial-temporal features from multiple EEG channels. Specifically, we construct two layers SGCN by introducing adjacency matrices to adaptively learn the intrinsic connection among different EEG channels. Moreover, an attention-enhanced mechanism is placed into a bi-directional LSTM module to extract the crucial spatial-temporal features from sequential EEG data, and then these features serve as the input layer of the classifier to learn discriminative emotion-related features. Extensive experiments on the DEAP, SEED, and SEED-IV datasets demonstrate the effectiveness of the proposed ST-GCLSTM model, revealing that our model had an absolute performance improvement over state-of-the-art strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼藏鸟完成签到,获得积分10
1秒前
孔难破发布了新的文献求助10
3秒前
科研通AI5应助江峰采纳,获得10
4秒前
5秒前
124完成签到,获得积分10
6秒前
7秒前
李爱国应助嘻嘻采纳,获得10
7秒前
科研通AI2S应助任性雨筠采纳,获得10
7秒前
8秒前
发发完成签到 ,获得积分10
9秒前
heyheybaby发布了新的文献求助10
11秒前
13秒前
wyl发布了新的文献求助10
14秒前
等待戈多发布了新的文献求助30
14秒前
研友_VZG7GZ应助jiayou采纳,获得10
15秒前
15秒前
17秒前
17秒前
17秒前
嘻嘻发布了新的文献求助10
18秒前
ZiruiDing完成签到 ,获得积分10
19秒前
猴儿完成签到,获得积分20
19秒前
qiulong发布了新的文献求助10
20秒前
康师傅冰红茶完成签到,获得积分10
20秒前
20秒前
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
songyy发布了新的文献求助10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
meo应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
22秒前
科研助手6应助科研通管家采纳,获得20
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得30
22秒前
小海应助科研通管家采纳,获得10
22秒前
小白发布了新的文献求助20
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799816
求助须知:如何正确求助?哪些是违规求助? 3345094
关于积分的说明 10323610
捐赠科研通 3061657
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462