Area, Time and Energy Efficient Multicore Hardware Accelerators for Extended Merkle Signature Scheme

梅克尔树 散列函数 计算机科学 哈希表 哈希树 Merkle签名方案 并行计算 算法 理论计算机科学 数学
作者
Yuan Cao,Yanze Wu,Lan Qin,Shuai Chen,Chip-Hong Chang
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tcsi.2022.3200987
摘要

This paper addresses a barrier that prevents the timely adoption of post-quantum signature algorithms, such as the eXtended Merkle Signature Scheme (XMSS), due to its lack of fast, cost-effective and energy-efficient hardware accelerators. Two new architectures that use more than one hash core are proposed for the first time to significantly reduce the latency of two bottleneck XMSS operations, namely key generation and signature generation, for which the speed of existing hardware accelerators is still apparently inadequate. The first proposed multi-core design uses block RAM and a simplified data flow to maximize the use of $p$ hash cores concurrently in three major sequential stages of computation, i.e., Winternitz One-time Signature (WOTS), L-tree and Merkle tree. The second proposed multi-core design adds a dedicated hash core for tree hashing in the L-tree and Merkle tree while keeping the $p$ hash cores solely for chain hashing in WOTS. The dedicated hash core leapfrogs between the L-tree and Merkle tree and computes concurrently with the $p$ hash cores to keep the $p+1$ hash cores active most of the time while minimizing the storage requirement and energy consumption. Both designs are implemented on a 28 nm ATRIX-7 FPGA chip. Experimental results show that both proposed accelerators with $p=8$ operate at a much faster speed and consume significantly less hardware resources and energy than all existing XMSS accelerators. Specifically, they are $\sim$ 8 $\times$ and $\sim$ 6 $\times$ faster than the fastest reported design in key generation and signature generation operations, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在雨里思考完成签到,获得积分10
刚刚
舒适青槐完成签到 ,获得积分10
1秒前
动漫大师发布了新的文献求助10
2秒前
bjx发布了新的文献求助10
2秒前
3秒前
Ava应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
笨笨芯应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
听听发布了新的文献求助10
6秒前
Sunday发布了新的文献求助30
8秒前
10秒前
11秒前
西米完成签到,获得积分10
11秒前
西米发布了新的文献求助10
14秒前
Rye227完成签到,获得积分10
16秒前
Lensin完成签到 ,获得积分10
16秒前
笨笨忘幽发布了新的文献求助10
17秒前
22秒前
留胡子的霖应助笨笨忘幽采纳,获得10
25秒前
26秒前
26秒前
29秒前
29秒前
yn发布了新的文献求助30
31秒前
zw2530完成签到 ,获得积分10
32秒前
信仰完成签到,获得积分10
35秒前
36秒前
pluto应助笨笨忘幽采纳,获得10
38秒前
40秒前
Lucas应助ZHH采纳,获得10
40秒前
小田完成签到,获得积分10
42秒前
42秒前
lyx发布了新的文献求助10
43秒前
青橘短衫发布了新的文献求助10
45秒前
47秒前
小田发布了新的文献求助10
48秒前
冷静如柏完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325186
关于积分的说明 10221815
捐赠科研通 3040328
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535