Privacy‐enhancing machine learning framework with private aggregation of teacher ensembles

计算机科学 信息泄露 Guard(计算机科学) 服务器 上传 计算机安全 熵(时间箭头) 新闻聚合器 遮罩(插图) 过程(计算) 机器学习 人工智能 理论计算机科学 计算机网络 万维网 艺术 物理 量子力学 视觉艺术 程序设计语言 操作系统
作者
Shengnan Zhao,Qi Zhao,Chuan Zhao,Jiang Han,Qiuliang Xu
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (11): 9904-9920 被引量:1
标识
DOI:10.1002/int.23020
摘要

Private aggregation of teacher ensembles (PATE), a general machine learning framework based on knowledge distillation, can provide a privacy guarantee for training data sets. However, this framework poses a number of security risks. First, PATE mainly focuses on the privacy of teachers' training data and fails to protect the privacy of their students' data. Second, PATE relies heavily on a trusted aggregator to count teachers' votes, which is not convincing enough to assume a third party would never leak teachers' votes during the knowledge transfer process. To address the abovementioned issues, we improve the original PATE framework and present a new one that combines secret sharing with Intel Software Guard Extensions in a novel way. In the proposed framework, teachers are trained locally, then uploaded and stored in two computing servers in the form of secret shares. In the knowledge transfer phase, the two computing servers receive shares of private inputs from students before collaboratively performing secure predictions. Thus neither teachers nor students expose sensitive information. During the aggregation process, we propose an effective masking technique suitable for the setting to keep the prediction results private and prevent the votes from being leaked to the aggregation server. Besides, we optimize the aggregation mechanism and add noise perturbations adaptively based on the posterior entropy of the prediction results. Finally, we evaluate the performance of the new framework on multiple data sets and experimentally demonstrate that the new framework allows highly efficient, accurate, and secure predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曲艺发布了新的文献求助10
刚刚
善学以致用应助小王同学采纳,获得10
1秒前
mengtingmei应助lin采纳,获得30
1秒前
1秒前
street发布了新的文献求助10
1秒前
Jane发布了新的文献求助10
1秒前
在水一方应助you采纳,获得10
1秒前
1秒前
1秒前
阿喵完成签到,获得积分10
2秒前
2秒前
睿睿发布了新的文献求助10
3秒前
3秒前
姜夔发布了新的文献求助10
3秒前
善学以致用应助沐阳采纳,获得10
4秒前
广发牛勿完成签到,获得积分20
4秒前
学术搭子发布了新的文献求助10
4秒前
浮游应助薛之谦的猫采纳,获得10
5秒前
Akim应助zc采纳,获得10
5秒前
慕青应助之星君采纳,获得10
5秒前
5秒前
6秒前
翎1发布了新的文献求助10
6秒前
111111111完成签到,获得积分10
6秒前
Flexy发布了新的文献求助30
6秒前
无花果应助lijing采纳,获得10
6秒前
Ava应助自觉宛筠采纳,获得10
6秒前
爱笑代芹完成签到 ,获得积分10
7秒前
wind完成签到,获得积分10
7秒前
7秒前
7秒前
北冥鱼发布了新的文献求助10
7秒前
7秒前
科研通AI6应助JL采纳,获得10
7秒前
薛之谦的猫应助JL采纳,获得10
7秒前
bjsun应助JL采纳,获得10
8秒前
xuankelian应助JL采纳,获得30
8秒前
善学以致用应助ray采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506145
求助须知:如何正确求助?哪些是违规求助? 4601666
关于积分的说明 14478195
捐赠科研通 4535688
什么是DOI,文献DOI怎么找? 2485572
邀请新用户注册赠送积分活动 1468465
关于科研通互助平台的介绍 1440943