Document Image Forgery Detection Based on Deep Learning Models

人工智能 计算机科学 图像(数学) 深度学习 复制 鉴定(生物学) 数字图像 图像编辑 互联网 计算机视觉 图像处理 万维网 植物 政治学 法学 生物
作者
Piaoyang Yang,Wei Fang,Feng Zhang,Lifei Bai,Yuanyuan Gao
标识
DOI:10.1109/iseeie55684.2022.00014
摘要

With the improvement of the communication speed and the popularization of the Internet, images have become the most common information medium in life. At the same time, the adverse effects of forged images in the media, credit investigation, finance and academic fields are becoming more and more significant. Therefore, in recent years, the research on forged image identification algorithms has been active worldwide. Image forgery has different classification methods. According to whether the forgery uses deep learning methods, it can be divided into deep forged images and traditional forged images. It can also be divided into ordinary image forged and document image forged according to whether the image is a text image. Different forgery methods will leave different forgery traces in the image, corresponding to different forgery identification methods. Aiming at document forgery images, this paper proposes a forgery detection algorithm based on deep learning and fusion of error level analysis (ELA) information. Compared with the previous forgery identification algorithms, the algorithm in this paper can not only identify whether the document image is forged, but can also locate the forged text area. The algorithm proposed in this paper supports the detection of document image forgery generated by cutting, copying, erasing and deep learning methods. The detection algorithm of this paper participated in the fifth forgery detection competition of Ali Tianchi and won the 32nd place among 1470 participating teams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cmuzf完成签到,获得积分10
刚刚
Nuyoah完成签到 ,获得积分10
1秒前
arzw完成签到,获得积分10
1秒前
QianchengZhao应助小黑鲨采纳,获得10
2秒前
小心薛了你完成签到,获得积分10
3秒前
发嗲的雨筠完成签到,获得积分10
3秒前
马前人完成签到,获得积分10
3秒前
3秒前
wyblobin完成签到,获得积分10
3秒前
cmh完成签到,获得积分10
5秒前
马前人发布了新的文献求助10
6秒前
6秒前
不万能测光表完成签到,获得积分20
6秒前
充电宝应助杨江丽采纳,获得10
6秒前
文静的行恶完成签到,获得积分10
6秒前
斯文奇迹完成签到,获得积分10
7秒前
若水发布了新的文献求助10
7秒前
one完成签到 ,获得积分10
8秒前
es完成签到,获得积分10
9秒前
坡坡大王应助xzn1123采纳,获得10
9秒前
9秒前
nasya完成签到,获得积分10
11秒前
罗大大完成签到 ,获得积分10
11秒前
11秒前
医痞子完成签到,获得积分10
12秒前
12秒前
虚幻沛文完成签到 ,获得积分10
13秒前
CChi0923完成签到,获得积分10
13秒前
坡坡大王给机灵的妙芙的求助进行了留言
14秒前
王山完成签到,获得积分10
14秒前
15秒前
怡然的煜城完成签到,获得积分10
15秒前
NexusExplorer应助tourist585采纳,获得10
16秒前
云深完成签到 ,获得积分10
16秒前
米缸发布了新的文献求助10
16秒前
BruceQ完成签到,获得积分10
16秒前
iota发布了新的文献求助40
17秒前
小赞完成签到,获得积分10
17秒前
hehehe85200完成签到,获得积分10
17秒前
exy完成签到,获得积分10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816035
求助须知:如何正确求助?哪些是违规求助? 3359486
关于积分的说明 10403177
捐赠科研通 3077391
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767759