Data augmentation for medical imaging: A systematic literature review

计算机科学 人工智能 机器学习 深度学习 任务(项目管理) 医学影像学 集合(抽象数据类型) 分割 数据集 数据科学 经济 管理 程序设计语言
作者
Fabio Garcea,Alessio Serra,Fabrizio Lamberti,Lia Morra
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106391-106391 被引量:218
标识
DOI:10.1016/j.compbiomed.2022.106391
摘要

Recent advances in Deep Learning have largely benefited from larger and more diverse training sets. However, collecting large datasets for medical imaging is still a challenge due to privacy concerns and labeling costs. Data augmentation makes it possible to greatly expand the amount and variety of data available for training without actually collecting new samples. Data augmentation techniques range from simple yet surprisingly effective transformations such as cropping, padding, and flipping, to complex generative models. Depending on the nature of the input and the visual task, different data augmentation strategies are likely to perform differently. For this reason, it is conceivable that medical imaging requires specific augmentation strategies that generate plausible data samples and enable effective regularization of deep neural networks. Data augmentation can also be used to augment specific classes that are underrepresented in the training set, e.g., to generate artificial lesions. The goal of this systematic literature review is to investigate which data augmentation strategies are used in the medical domain and how they affect the performance of clinical tasks such as classification, segmentation, and lesion detection. To this end, a comprehensive analysis of more than 300 articles published in recent years (2018–2022) was conducted. The results highlight the effectiveness of data augmentation across organs, modalities, tasks, and dataset sizes, and suggest potential avenues for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
一苇以航完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助30
3秒前
香蕉觅云应助Tu采纳,获得10
4秒前
所所应助拼搏的飞薇采纳,获得10
5秒前
所谓完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
glock完成签到,获得积分20
10秒前
Ziwei完成签到,获得积分10
10秒前
ysyslalala发布了新的文献求助10
10秒前
li完成签到,获得积分10
12秒前
12秒前
13秒前
充电宝应助多情向日葵采纳,获得10
14秒前
15秒前
20秒前
peakmon完成签到 ,获得积分10
20秒前
刘智山完成签到 ,获得积分10
20秒前
21秒前
李爱国应助hzhang0807采纳,获得10
22秒前
22秒前
22秒前
多情向日葵完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
加绒完成签到,获得积分10
26秒前
27秒前
量子星尘发布了新的文献求助100
27秒前
darren发布了新的文献求助10
28秒前
28秒前
28秒前
Chief完成签到,获得积分0
28秒前
Yan发布了新的文献求助10
29秒前
光亮念文完成签到,获得积分10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241256
求助须知:如何正确求助?哪些是违规求助? 3774887
关于积分的说明 11854495
捐赠科研通 3429828
什么是DOI,文献DOI怎么找? 1882599
邀请新用户注册赠送积分活动 934467
科研通“疑难数据库(出版商)”最低求助积分说明 841016