亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting information usefulness in health information identification from modal behaviors

鉴定(生物学) 情态动词 手势 凝视 人工智能 计算机科学 机器学习 相互信息 卷积神经网络 植物 生物 化学 高分子化学
作者
Jing Chen,Lu Zhang,Quan Lu,Hui Liu,Shuaipu Chen
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (2): 103220-103220 被引量:4
标识
DOI:10.1016/j.ipm.2022.103220
摘要

Finding useful health information should be the highest priority when identifying health information. Predicting information usefulness will significantly improve the effectiveness and efficiency of health information identification, which plays a vital role in fighting against misinformation. Modal behaviors, such as gesture and gaze, are promising indicators of usefulness since they deliver a reliable, thorough, natural, and direct process of user cognitive processing. Therefore, this study aimed to use gesture and gaze behaviors to predict whether information is useful for health information identification. Twenty-four college students were recruited to freely search for information using a smartphone to identify the truthfulness of four propositions (two were true and two were false) about public health epidemics. The participants' gesture behavior, gaze behavior, and information usefulness as perceived by themselves were collected. Based on user cognition, the process of information usefulness judgment was placed into two phases: skimming and reading. Thirty-one features derived from modal behaviors in each phase were extracted. Feature optimization based on the Mann-Whitney U test and random forest was performed. Five common algorithms were used to construct information usefulness prediction models, and these models were compared by the F1_score. Finally, dwell time and gaze entropy in the reading phase were the most important gesture and gaze features respectively. BP neural network was selected to build a unimodal model based on gesture, and gradient boosting decision tree was selected to build a unimodal model based on gaze and a multimodal model combining both. These models all achieved F1_score above 77% and were applicable to different scenarios in health information identification. The model based on gesture could satisfy strong technology or legal constrains, the model based on gaze was ideal for AR, MR or metaverse applications, and the model combining both offered an alternative for multimodal human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nan发布了新的文献求助10
1秒前
科目三应助Dr_an采纳,获得20
1秒前
3秒前
poolgreen发布了新的文献求助10
9秒前
躺赢完成签到 ,获得积分10
15秒前
16秒前
Dr_an发布了新的文献求助20
22秒前
宅宅完成签到 ,获得积分10
27秒前
大宝发布了新的文献求助10
29秒前
46秒前
Dr_an完成签到,获得积分10
1分钟前
zhaoty完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
scm应助科研通管家采纳,获得30
1分钟前
Zy完成签到,获得积分10
1分钟前
草木完成签到,获得积分10
1分钟前
2分钟前
幻梦如歌完成签到,获得积分0
2分钟前
焦糖完成签到,获得积分10
2分钟前
荀煜祺完成签到,获得积分10
2分钟前
2分钟前
2分钟前
isaac发布了新的文献求助10
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
3分钟前
CodeCraft应助isaac采纳,获得10
3分钟前
scm应助科研通管家采纳,获得30
3分钟前
3分钟前
Lucky发布了新的文献求助10
3分钟前
3分钟前
搜集达人应助Lucky采纳,获得10
3分钟前
overlood完成签到 ,获得积分10
4分钟前
司马立果发布了新的文献求助10
4分钟前
4分钟前
Mr.Kim发布了新的文献求助10
4分钟前
科研通AI5应助司马立果采纳,获得10
4分钟前
Mr.Kim完成签到,获得积分20
4分钟前
梦残斋完成签到 ,获得积分10
5分钟前
可千万不要躺平呀完成签到,获得积分10
5分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827283
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251