已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting information usefulness in health information identification from modal behaviors

鉴定(生物学) 情态动词 手势 凝视 人工智能 计算机科学 机器学习 相互信息 卷积神经网络 植物 生物 化学 高分子化学
作者
Jing Chen,Lu Zhang,Quan Lu,Hui Liu,Shuaipu Chen
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (2): 103220-103220 被引量:4
标识
DOI:10.1016/j.ipm.2022.103220
摘要

Finding useful health information should be the highest priority when identifying health information. Predicting information usefulness will significantly improve the effectiveness and efficiency of health information identification, which plays a vital role in fighting against misinformation. Modal behaviors, such as gesture and gaze, are promising indicators of usefulness since they deliver a reliable, thorough, natural, and direct process of user cognitive processing. Therefore, this study aimed to use gesture and gaze behaviors to predict whether information is useful for health information identification. Twenty-four college students were recruited to freely search for information using a smartphone to identify the truthfulness of four propositions (two were true and two were false) about public health epidemics. The participants' gesture behavior, gaze behavior, and information usefulness as perceived by themselves were collected. Based on user cognition, the process of information usefulness judgment was placed into two phases: skimming and reading. Thirty-one features derived from modal behaviors in each phase were extracted. Feature optimization based on the Mann-Whitney U test and random forest was performed. Five common algorithms were used to construct information usefulness prediction models, and these models were compared by the F1_score. Finally, dwell time and gaze entropy in the reading phase were the most important gesture and gaze features respectively. BP neural network was selected to build a unimodal model based on gesture, and gradient boosting decision tree was selected to build a unimodal model based on gaze and a multimodal model combining both. These models all achieved F1_score above 77% and were applicable to different scenarios in health information identification. The model based on gesture could satisfy strong technology or legal constrains, the model based on gaze was ideal for AR, MR or metaverse applications, and the model combining both offered an alternative for multimodal human-computer interaction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
华仔应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得100
4秒前
5秒前
Hao完成签到,获得积分10
8秒前
深情安青应助light采纳,获得10
13秒前
17秒前
lucky完成签到 ,获得积分10
20秒前
问之发布了新的文献求助30
21秒前
科研通AI6应助吕懿采纳,获得10
25秒前
问之完成签到,获得积分20
28秒前
小小完成签到,获得积分10
31秒前
33秒前
guolin完成签到,获得积分20
33秒前
小小发布了新的文献求助100
36秒前
37秒前
37秒前
lili发布了新的文献求助10
38秒前
ccc完成签到,获得积分10
42秒前
guolin关注了科研通微信公众号
43秒前
厉爵风完成签到,获得积分10
44秒前
45秒前
海贵完成签到,获得积分10
45秒前
黄陈涛完成签到 ,获得积分10
46秒前
aimynora完成签到 ,获得积分10
47秒前
天天快乐应助单纯的问安采纳,获得10
47秒前
绿柏完成签到,获得积分10
49秒前
qpp完成签到,获得积分10
50秒前
搬砖王发布了新的文献求助10
55秒前
55秒前
大江发布了新的文献求助10
59秒前
TTK完成签到,获得积分10
59秒前
1分钟前
星点完成签到 ,获得积分10
1分钟前
yang发布了新的文献求助10
1分钟前
拉长的迎曼完成签到 ,获得积分10
1分钟前
善学以致用应助zzzz采纳,获得10
1分钟前
1分钟前
故然完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616973
求助须知:如何正确求助?哪些是违规求助? 4701313
关于积分的说明 14913199
捐赠科研通 4747150
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049