Predicting information usefulness in health information identification from modal behaviors

鉴定(生物学) 情态动词 手势 凝视 人工智能 计算机科学 机器学习 相互信息 卷积神经网络 植物 生物 化学 高分子化学
作者
Jing Chen,Lu Zhang,Quan Lu,Hui Liu,Shuaipu Chen
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (2): 103220-103220 被引量:3
标识
DOI:10.1016/j.ipm.2022.103220
摘要

Finding useful health information should be the highest priority when identifying health information. Predicting information usefulness will significantly improve the effectiveness and efficiency of health information identification, which plays a vital role in fighting against misinformation. Modal behaviors, such as gesture and gaze, are promising indicators of usefulness since they deliver a reliable, thorough, natural, and direct process of user cognitive processing. Therefore, this study aimed to use gesture and gaze behaviors to predict whether information is useful for health information identification. Twenty-four college students were recruited to freely search for information using a smartphone to identify the truthfulness of four propositions (two were true and two were false) about public health epidemics. The participants' gesture behavior, gaze behavior, and information usefulness as perceived by themselves were collected. Based on user cognition, the process of information usefulness judgment was placed into two phases: skimming and reading. Thirty-one features derived from modal behaviors in each phase were extracted. Feature optimization based on the Mann-Whitney U test and random forest was performed. Five common algorithms were used to construct information usefulness prediction models, and these models were compared by the F1_score. Finally, dwell time and gaze entropy in the reading phase were the most important gesture and gaze features respectively. BP neural network was selected to build a unimodal model based on gesture, and gradient boosting decision tree was selected to build a unimodal model based on gaze and a multimodal model combining both. These models all achieved F1_score above 77% and were applicable to different scenarios in health information identification. The model based on gesture could satisfy strong technology or legal constrains, the model based on gaze was ideal for AR, MR or metaverse applications, and the model combining both offered an alternative for multimodal human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助sunguangbin采纳,获得10
1秒前
唐帅发布了新的文献求助10
2秒前
2秒前
4秒前
Hello应助wangwang采纳,获得10
4秒前
龙成阳完成签到,获得积分10
6秒前
hhhc完成签到,获得积分10
7秒前
song发布了新的文献求助10
8秒前
bkagyin应助111采纳,获得10
9秒前
lwtsy发布了新的文献求助10
9秒前
高高小凝完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
笙笙完成签到,获得积分10
12秒前
高高小凝发布了新的文献求助10
13秒前
14秒前
Steven发布了新的文献求助30
15秒前
笙笙发布了新的文献求助10
16秒前
谨言完成签到 ,获得积分10
16秒前
FIN应助sns八丘采纳,获得20
17秒前
18秒前
无奈的如彤完成签到,获得积分20
18秒前
小七发布了新的文献求助10
18秒前
sanch完成签到 ,获得积分10
20秒前
lwtsy完成签到,获得积分10
21秒前
染墨完成签到,获得积分10
23秒前
sns八丘给sns八丘的求助进行了留言
23秒前
FashionBoy应助ma采纳,获得10
24秒前
26秒前
归海含烟完成签到,获得积分10
27秒前
跳脚的虾完成签到 ,获得积分10
30秒前
32秒前
cmicha发布了新的文献求助10
36秒前
可爱完成签到 ,获得积分10
38秒前
isak完成签到,获得积分10
41秒前
41秒前
丘比特应助可爱采纳,获得10
44秒前
HS发布了新的文献求助10
45秒前
大模型应助wuxunxun2015采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761742
求助须知:如何正确求助?哪些是违规求助? 3305515
关于积分的说明 10134536
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658216
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751