Predicting information usefulness in health information identification from modal behaviors

鉴定(生物学) 情态动词 手势 凝视 人工智能 计算机科学 机器学习 相互信息 卷积神经网络 植物 生物 化学 高分子化学
作者
Jing Chen,Lu Zhang,Quan Lu,Hui Liu,Shuaipu Chen
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (2): 103220-103220
标识
DOI:10.1016/j.ipm.2022.103220
摘要

Finding useful health information should be the highest priority when identifying health information. Predicting information usefulness will significantly improve the effectiveness and efficiency of health information identification, which plays a vital role in fighting against misinformation. Modal behaviors, such as gesture and gaze, are promising indicators of usefulness since they deliver a reliable, thorough, natural, and direct process of user cognitive processing. Therefore, this study aimed to use gesture and gaze behaviors to predict whether information is useful for health information identification. Twenty-four college students were recruited to freely search for information using a smartphone to identify the truthfulness of four propositions (two were true and two were false) about public health epidemics. The participants' gesture behavior, gaze behavior, and information usefulness as perceived by themselves were collected. Based on user cognition, the process of information usefulness judgment was placed into two phases: skimming and reading. Thirty-one features derived from modal behaviors in each phase were extracted. Feature optimization based on the Mann-Whitney U test and random forest was performed. Five common algorithms were used to construct information usefulness prediction models, and these models were compared by the F1_score. Finally, dwell time and gaze entropy in the reading phase were the most important gesture and gaze features respectively. BP neural network was selected to build a unimodal model based on gesture, and gradient boosting decision tree was selected to build a unimodal model based on gaze and a multimodal model combining both. These models all achieved F1_score above 77% and were applicable to different scenarios in health information identification. The model based on gesture could satisfy strong technology or legal constrains, the model based on gaze was ideal for AR, MR or metaverse applications, and the model combining both offered an alternative for multimodal human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浪麻麻完成签到 ,获得积分10
2秒前
onevip完成签到,获得积分10
4秒前
鞑靼完成签到 ,获得积分10
7秒前
上官聪展完成签到 ,获得积分10
10秒前
温如军完成签到 ,获得积分10
10秒前
迷你的夜天完成签到 ,获得积分10
10秒前
11秒前
laohu完成签到,获得积分10
14秒前
黑球发布了新的文献求助10
17秒前
WYR完成签到 ,获得积分10
21秒前
roundtree完成签到 ,获得积分0
23秒前
大大蕾完成签到 ,获得积分10
24秒前
Johnlian完成签到 ,获得积分10
25秒前
hhh2018687完成签到,获得积分10
28秒前
天才罗完成签到 ,获得积分10
29秒前
俊逸吐司完成签到 ,获得积分10
31秒前
萨格完成签到 ,获得积分10
36秒前
meiyang完成签到 ,获得积分10
39秒前
kento应助蝌蚪采纳,获得200
39秒前
科研通AI2S应助蝌蚪采纳,获得10
46秒前
哭泣的映寒完成签到 ,获得积分10
56秒前
mrwang完成签到 ,获得积分10
1分钟前
mia完成签到,获得积分10
1分钟前
1分钟前
稳重的秋天完成签到,获得积分20
1分钟前
YC发布了新的文献求助10
1分钟前
乃惜完成签到,获得积分10
1分钟前
YC完成签到,获得积分10
1分钟前
细心的如天完成签到 ,获得积分10
1分钟前
Aurora完成签到 ,获得积分10
1分钟前
btcat完成签到,获得积分10
1分钟前
丹青完成签到 ,获得积分10
1分钟前
pphss完成签到,获得积分10
1分钟前
Jack80发布了新的文献求助200
1分钟前
zgtmark完成签到,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
碧蓝雁风完成签到 ,获得积分10
2分钟前
Kidmuse完成签到,获得积分10
2分钟前
困困困完成签到 ,获得积分10
2分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052652
求助须知:如何正确求助?哪些是违规求助? 2709874
关于积分的说明 7418267
捐赠科研通 2354453
什么是DOI,文献DOI怎么找? 1246090
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921