Predicting information usefulness in health information identification from modal behaviors

鉴定(生物学) 情态动词 手势 凝视 人工智能 计算机科学 机器学习 相互信息 卷积神经网络 植物 生物 化学 高分子化学
作者
Jing Chen,Lu Zhang,Quan Lu,Hui Liu,Shuaipu Chen
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (2): 103220-103220 被引量:4
标识
DOI:10.1016/j.ipm.2022.103220
摘要

Finding useful health information should be the highest priority when identifying health information. Predicting information usefulness will significantly improve the effectiveness and efficiency of health information identification, which plays a vital role in fighting against misinformation. Modal behaviors, such as gesture and gaze, are promising indicators of usefulness since they deliver a reliable, thorough, natural, and direct process of user cognitive processing. Therefore, this study aimed to use gesture and gaze behaviors to predict whether information is useful for health information identification. Twenty-four college students were recruited to freely search for information using a smartphone to identify the truthfulness of four propositions (two were true and two were false) about public health epidemics. The participants' gesture behavior, gaze behavior, and information usefulness as perceived by themselves were collected. Based on user cognition, the process of information usefulness judgment was placed into two phases: skimming and reading. Thirty-one features derived from modal behaviors in each phase were extracted. Feature optimization based on the Mann-Whitney U test and random forest was performed. Five common algorithms were used to construct information usefulness prediction models, and these models were compared by the F1_score. Finally, dwell time and gaze entropy in the reading phase were the most important gesture and gaze features respectively. BP neural network was selected to build a unimodal model based on gesture, and gradient boosting decision tree was selected to build a unimodal model based on gaze and a multimodal model combining both. These models all achieved F1_score above 77% and were applicable to different scenarios in health information identification. The model based on gesture could satisfy strong technology or legal constrains, the model based on gaze was ideal for AR, MR or metaverse applications, and the model combining both offered an alternative for multimodal human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的血茗完成签到,获得积分10
刚刚
英俊的铭应助闪闪念文采纳,获得10
刚刚
1秒前
1秒前
大模型应助lilili采纳,获得50
2秒前
5秒前
6秒前
6秒前
zzz完成签到,获得积分10
7秒前
山水之乐发布了新的文献求助10
8秒前
窜天猴完成签到,获得积分10
8秒前
一串表情发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助10
10秒前
10秒前
小文完成签到,获得积分10
11秒前
11秒前
dola完成签到,获得积分10
12秒前
13秒前
shuangfeng1853完成签到 ,获得积分10
13秒前
想人陪的马里奥完成签到,获得积分10
13秒前
蛋挞完成签到,获得积分10
14秒前
0077发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
17秒前
纯真的元风完成签到,获得积分10
17秒前
罗大大完成签到 ,获得积分10
17秒前
NexusExplorer应助耍酷的母鸡采纳,获得30
19秒前
19秒前
兴奋小丸子完成签到,获得积分10
19秒前
Yi羿完成签到 ,获得积分10
20秒前
Jane完成签到,获得积分10
20秒前
丘比特应助背后飞柏采纳,获得10
20秒前
王359发布了新的文献求助10
21秒前
hammer发布了新的文献求助10
23秒前
24秒前
xinanan发布了新的文献求助10
24秒前
25秒前
王359完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965976
求助须知:如何正确求助?哪些是违规求助? 3511306
关于积分的说明 11157319
捐赠科研通 3245873
什么是DOI,文献DOI怎么找? 1793215
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286