High-throughput functional annotation of natural products by integrated activity profiling

计算生物学 代谢组学 天然产物 药物发现 仿形(计算机编程) 生物 系统生物学 注释 计算机科学 生物信息学 生物化学 操作系统
作者
Suzie K. Hight,Trevor N. Clark,Kenji L. Kurita,Elizabeth A. McMillan,Walter M. Bray,Anam F. Shaikh,Aswad S Khadilkar,F. P. Jake Haeckl,Fausto Carnevale Neto,Scott La,Akshar Lohith,Rachel M. Vaden,Jeon Lee,Shuguang Wei,R. Scott Lokey,Michael A. White,Roger G. Linington,John B. MacMillan
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:119 (49) 被引量:3
标识
DOI:10.1073/pnas.2208458119
摘要

Determining mechanism of action (MOA) is one of the biggest challenges in natural products discovery. Here, we report a comprehensive platform that uses Similarity Network Fusion (SNF) to improve MOA predictions by integrating data from the cytological profiling high-content imaging platform and the gene expression platform Functional Signature Ontology, and pairs these data with untargeted metabolomics analysis for de novo bioactive compound discovery. The predictive value of the integrative approach was assessed using a library of target-annotated small molecules as benchmarks. Using Kolmogorov-Smirnov (KS) tests to compare in-class to out-of-class similarity, we found that SNF retains the ability to identify significant in-class similarity across a diverse set of target classes, and could find target classes not detectable in either platform alone. This confirmed that integration of expression-based and image-based phenotypes can accurately report on MOA. Furthermore, we integrated untargeted metabolomics of complex natural product fractions with the SNF network to map biological signatures to specific metabolites. Three examples are presented where SNF coupled with metabolomics was used to directly functionally characterize natural products and accelerate identification of bioactive metabolites, including the discovery of the azoxy-containing biaryl compounds parkamycins A and B. Our results support SNF integration of multiple phenotypic screening approaches along with untargeted metabolomics as a powerful approach for advancing natural products drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zhang发布了新的文献求助30
1秒前
15完成签到,获得积分10
1秒前
1秒前
后来应助凝凝小采纳,获得10
2秒前
不懈奋进应助西出钰门采纳,获得30
2秒前
一条小鱼完成签到 ,获得积分10
3秒前
慕青应助优美的背包采纳,获得10
3秒前
year发布了新的文献求助10
3秒前
orixero应助科研雪瑞采纳,获得10
4秒前
momo发布了新的文献求助50
4秒前
凡人完成签到,获得积分10
4秒前
奈布发布了新的文献求助10
5秒前
5秒前
5秒前
传奇3应助guojingjing采纳,获得10
5秒前
科研通AI5应助Luna采纳,获得10
6秒前
在水一方应助wo采纳,获得10
6秒前
帅气的猫发布了新的文献求助10
6秒前
unowhoiam发布了新的文献求助10
7秒前
7秒前
8秒前
nefu biology发布了新的文献求助10
8秒前
yls发布了新的文献求助10
9秒前
stormhero发布了新的文献求助20
10秒前
10秒前
刻刻完成签到,获得积分10
11秒前
黄青青完成签到,获得积分10
11秒前
zho发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
自由的雨南完成签到,获得积分10
12秒前
jsxuyueming发布了新的文献求助10
12秒前
wangdong完成签到,获得积分0
13秒前
13秒前
科研通AI5应助guohezu采纳,获得10
14秒前
14秒前
读心理学导致的完成签到,获得积分10
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300