MMSRNet: Pathological image super-resolution by multi-task and multi-scale learning

放大倍数 计算机科学 人工智能 任务(项目管理) 比例(比率) 模式识别(心理学) 图像(数学) 深度学习 特征(语言学) 缩放比例 计算机视觉 桥接(联网) 数学 计算机网络 几何学 管理 经济 语言学 哲学 物理 量子力学
作者
Xinyue Wu,Zhineng Chen,Changgen Peng,Xiongjun Ye
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:81: 104428-104428 被引量:4
标识
DOI:10.1016/j.bspc.2022.104428
摘要

Pathological diagnosis is the gold standard for disease assessment in clinical practice. It is conducted by inspecting the specimen at the microscopical level. Therefore, a very high-resolution pathological image that precisely describes the submicron-scale appearance is essential in the era of digital pathology, which is not easily obtained. Recently, pathological image super-resolution (SR) has shown promising prospects in bridging this gap. However, existing studies have not fully explored the peculiarity of pathological data, which contains several gradually enlarged images describing the specimen at different magnifications. In this paper, we propose a novel MMSRNet that formulates the pathological image SR in a multi-task learning way. It adds an image magnification classification branch on top of the CNN-based SR network, e.g., RCAN. Therefore, the learning objective is transformed into performing the SR while classifying the magnification as accurately as possible. The incorporated classification label guides the network to learn a more powerful feature representation. Meanwhile, the multi-task learning paradigm also encourages the joint learning of multi-scale mapping functions corresponding to multiple magnifications. It thus enables the learned model to adaptively accommodate the magnification variants, overcoming the problem that performing SR from different magnifications is treated as independent tasks in existing studies. Extensive experiments are conducted to validate the effectiveness of MMSRNet. It not only gains better performance in performing SR across magnifications and scaling factors, but also exhibits attractive plug-and-play nature when RCAN is substituted by other SR networks. The generated images are also supposed to be helpful in clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助等等采纳,获得10
1秒前
歡禧完成签到,获得积分10
1秒前
科研通AI5应助神马都不懂采纳,获得10
1秒前
kyu完成签到,获得积分10
1秒前
1秒前
微笑襄发布了新的文献求助10
2秒前
2秒前
linelolo完成签到,获得积分10
2秒前
英俊的铭应助魔幻凝云采纳,获得10
3秒前
3秒前
3秒前
FATHER LI完成签到,获得积分10
3秒前
pcb发布了新的文献求助10
3秒前
爆米花应助麟钰采纳,获得10
4秒前
wanci应助星河在眼里采纳,获得10
4秒前
顺其自然完成签到 ,获得积分10
4秒前
4秒前
Yangyang完成签到,获得积分10
4秒前
白青完成签到,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
林屿溪完成签到,获得积分10
5秒前
5秒前
许甜甜鸭应助科研通管家采纳,获得10
5秒前
YellowStar发布了新的文献求助10
5秒前
5秒前
李健应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
歡禧发布了新的文献求助10
5秒前
英姑应助科研通管家采纳,获得10
6秒前
柯科研发布了新的文献求助10
6秒前
sb发布了新的文献求助10
6秒前
6秒前
6秒前
Mandy完成签到,获得积分10
6秒前
传奇3应助lxz采纳,获得10
7秒前
7秒前
雾影觅光完成签到,获得积分10
8秒前
Alger完成签到,获得积分10
8秒前
Kira发布了新的文献求助10
8秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376729
关于积分的说明 10494684
捐赠科研通 3096157
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820213
科研通“疑难数据库(出版商)”最低求助积分说明 771893