清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cuproptosis illustrates tumor micro-environment features and predicts prostate cancer therapeutic sensitivity and prognosis

前列腺癌 肿瘤科 转录组 比例危险模型 肿瘤微环境 癌症 内科学 医学 泌尿生殖系统 生物信息学 生物 基因 基因表达 生物化学
作者
Bisheng Cheng,Chen Tang,Jun-Jia Xie,Qianghua Zhou,Tianlong Luo,Qiong Wang,Hai Huang
出处
期刊:Life Sciences [Elsevier BV]
卷期号:325: 121659-121659 被引量:30
标识
DOI:10.1016/j.lfs.2023.121659
摘要

Prostate cancer (PCA) is a common malignant genitourinary tumor that significantly impacts patient survival. Cuproptosis, a copper-dependent programmed cell death mechanism, plays a vital role in tumor development, therapy resistance, and immune microenvironment regulation in PCA. However, research on cuproptosis in prostate cancer is still in its early stages. Using the publicly available datasets TCGA and GEO, we first acquired the transcriptome and clinical information of PCA patients. The expression of cuprotosis-related genes (CRG) was identified and a prediction model was established based on LASSO-COX method. The predictive performance of this model was evaluated based on Kaplan-Meier method. Using GEO datasets, we further confirmed the critical genes level in the model. Tumor responses to immune checkpoint (ICP) inhibitors were predicted based on Tumor Immune Dysfunction and Exclusion (TIDE) score. The Genomics of Drug Sensitivity in Cancer (GDSC) was utilized to forecast drug sensitivity in cancer cells, whereas the GSVA was employed to analyze enriched pathways related to the cuproptosis signature. Subsequently, the function of PDHA1 gene in PCA was verified. A predictive risk model on basis of five cuproptosis-related genes (ATP7B, DBT, LIPT1, GCSH, PDHA1) were established. The progression free survival of low-risk group was obviously longer than the high-risk group, and exhibit better response to ICB therapy.Furthermore,PDHA1 is very important in the pathological process of PCA according to regressions analysis result, and the validation of external data sets were conducted. High PDHA1 expression patients with PCA not only had a shorter PFS and were less likely to benefit from ICB treatment, but they were also less responsive to multiple targeted therapeutic drugs. In preliminary research, PDHA1 knockdown significantly decreased the proliferation and invasion of PCA cells. This study established a novel cuproptosis-related gene-based prostate cancer prediction model that accurately predicts the prognosis of PCA patients. The model benefits individualized therapy and can assist clinicians in making clinical decisions for PCA patients. Furthermore, our data show that PDHA1 promotes PCA cell proliferation and invasion while modulating the susceptibility to immunotherapy and other targeted therapies. PDHA1 can be regarded as an important target for PCA therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕容飞凤完成签到,获得积分10
7秒前
21秒前
科研通AI2S应助科研通管家采纳,获得30
22秒前
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
24秒前
郦如花发布了新的文献求助10
24秒前
糟糕的翅膀完成签到,获得积分10
24秒前
丸子完成签到 ,获得积分10
28秒前
王洪宇发布了新的文献求助10
30秒前
33秒前
cadcae完成签到,获得积分10
58秒前
BinSir完成签到 ,获得积分10
1分钟前
花无双完成签到,获得积分0
1分钟前
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
123321321345发布了新的文献求助10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
简奥斯汀完成签到 ,获得积分10
1分钟前
美好颜完成签到,获得积分10
1分钟前
123321321345完成签到,获得积分10
1分钟前
Haimian完成签到 ,获得积分10
1分钟前
1分钟前
rumengzhuo完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
wanci应助翁雁丝采纳,获得10
2分钟前
2分钟前
翁雁丝发布了新的文献求助10
2分钟前
Una完成签到,获得积分10
2分钟前
2分钟前
郦如花发布了新的文献求助10
2分钟前
Gary完成签到 ,获得积分10
3分钟前
wushang完成签到 ,获得积分10
3分钟前
海阔天空完成签到 ,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3913922
求助须知:如何正确求助?哪些是违规求助? 3459021
关于积分的说明 10903797
捐赠科研通 3185682
什么是DOI,文献DOI怎么找? 1761075
邀请新用户注册赠送积分活动 851850
科研通“疑难数据库(出版商)”最低求助积分说明 792980