Physics-informed few-shot learning for wind pressure prediction of low-rise buildings

风洞 弹丸 比例(比率) 风速 机器学习 标准差 人工智能 气象学 均方误差 计算机科学 模拟 工程类 数学 物理 航空航天工程 统计 有机化学 化学 量子力学
作者
Yanmo Weng,Stephanie German Paal
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 102000-102000 被引量:20
标识
DOI:10.1016/j.aei.2023.102000
摘要

This research proposes a physics-informed few-shot learning model to predict the wind pressures on full-scale specimens based on scaled wind tunnel experiments. Existing machine learning approaches in the wind engineering domain are incapable of accurately extrapolating the prediction from scaled data to full-scale data. The model presented in this research, on the other hand, is capable of extrapolating prediction from large-scale or small-scale models to full-scale measurements. The proposed ML model combines a few-shot learning model with the existing physical knowledges in the design standards related to the zonal information. This physical information helps in clustering the few-shot learning model and improves prediction performance. Using the proposed techniques, the scaling issue observed in wind tunnel tests can be partially resolved. A low mean-squared error, mean absolute error, and a high coefficient of determination were observed when predicting the mean and standard deviation wind pressure coefficients of the full-scale dataset. In addition, the benefit of incorporating physical knowledge is verified by comparing the results with a baseline few-shot learning model. This method is the first of its type as it is the first time to extrapolate in wind performance prediction by combining prior physical knowledge with a few-shot learning model in the field of wind engineering. With the benefit of the few-shot learning model, only a low-resolution of the measuring tap configuration is required, and the reliance on physical wind tunnel experiments can be reduced. The physics-informed few-shot learning model is an efficient, robust, and accurate alternate solution to predicting wind pressures on full-scale structures based on various modeled scale experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
潇洒一点发布了新的文献求助10
1秒前
2秒前
Jason_D完成签到,获得积分10
2秒前
zyzy1996完成签到,获得积分10
2秒前
琳666完成签到,获得积分10
2秒前
万能图书馆应助元大头采纳,获得10
3秒前
儒雅的老虎完成签到,获得积分10
3秒前
3秒前
yan完成签到,获得积分10
4秒前
4秒前
千寻发布了新的文献求助10
4秒前
tong完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
秋半梦发布了新的文献求助30
6秒前
陈美宏发布了新的文献求助10
6秒前
6秒前
科研通AI6应助houruibut采纳,获得10
6秒前
6秒前
震动的忆文完成签到,获得积分20
7秒前
wek发布了新的文献求助10
7秒前
签儿儿儿完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
标致逍遥完成签到,获得积分10
7秒前
我和狂三贴贴完成签到,获得积分10
8秒前
8秒前
顾矜应助迷路的麋鹿采纳,获得10
9秒前
Katyusha发布了新的文献求助30
9秒前
鱼yu完成签到,获得积分10
9秒前
思源应助默listening采纳,获得10
9秒前
机智凝海发布了新的文献求助10
9秒前
青梧完成签到,获得积分20
9秒前
9秒前
9秒前
CipherSage应助友好的小鸽子采纳,获得10
10秒前
蛀牙牙发布了新的文献求助100
10秒前
我是老大应助江夏清采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526