Consistency and adversarial semi-supervised learning for medical image segmentation

分割 计算机科学 鉴别器 人工智能 一致性(知识库) 半监督学习 深度学习 图像分割 眼底(子宫) 监督学习 模式识别(心理学) 机器学习 计算机视觉 医学 人工神经网络 电信 探测器 眼科
作者
Yongqiang Tang,Shilei Wang,Yuxun Qu,Zhihua Cui,Wensheng Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:161: 107018-107018 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107018
摘要

Medical image segmentation based on deep learning has made enormous progress in recent years. However, the performance of existing methods generally heavily relies on a large amount of labeled data, which are commonly expensive and time-consuming to obtain. To settle above issue, in this paper, a novel semi-supervised medical image segmentation method is proposed, in which the adversarial training mechanism and the collaborative consistency learning strategy are introduced into the mean teacher model. With the adversarial training mechanism, the discriminator can generate confidence maps for unlabeled data, such that more reliable supervised information for the student network is exploited. In the process of adversarial training, we further propose a collaborative consistency learning strategy by which the auxiliary discriminator can assist the primary discriminator in achieving supervised information with higher quality. We extensively evaluate our method on three representative yet challenging medical image segmentation tasks: (1) skin lesion segmentation from dermoscopy images in the International Skin Imaging Collaboration (ISIC) 2017 dataset; (2) optic cup and optic disk (OC/OD) segmentation from fundus images in the Retinal Fundus Glaucoma Challenge (REFUGE) dataset; and (3) tumor segmentation from lower-grade glioma (LGG) tumors images. The experimental results validate the superiority and effectiveness of our proposal when compared with the state-of-the-art semi-supervised medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朱问安发布了新的文献求助10
1秒前
shyxia完成签到 ,获得积分10
1秒前
852应助干不了一点采纳,获得10
2秒前
2秒前
西鱼完成签到,获得积分10
4秒前
JamesPei应助yly采纳,获得10
4秒前
ocean完成签到,获得积分10
4秒前
5秒前
z7486发布了新的文献求助10
5秒前
新司机完成签到,获得积分10
6秒前
是阿刁完成签到,获得积分10
6秒前
ladadada发布了新的文献求助10
6秒前
Ingram完成签到,获得积分10
6秒前
阿发发布了新的文献求助10
6秒前
酷波er应助yutou采纳,获得10
10秒前
星辰大海应助朱问安采纳,获得10
10秒前
11秒前
11秒前
猫的薛定二完成签到,获得积分10
12秒前
黑白和完成签到 ,获得积分10
13秒前
淡然伊完成签到,获得积分20
13秒前
14秒前
hong完成签到,获得积分10
14秒前
15秒前
锈了的xuebxuebi雪碧完成签到,获得积分10
15秒前
lh345769764发布了新的文献求助10
16秒前
SYLH应助小chen呀采纳,获得20
17秒前
CipherSage应助淡然伊采纳,获得10
17秒前
zwhy驳回了打打应助
18秒前
BIESHUOHUA发布了新的文献求助10
19秒前
大个应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
20秒前
大模型应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
只A不B应助科研通管家采纳,获得10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133747
求助须知:如何正确求助?哪些是违规求助? 3670574
关于积分的说明 11606658
捐赠科研通 3366901
什么是DOI,文献DOI怎么找? 1849786
邀请新用户注册赠送积分活动 913325
科研通“疑难数据库(出版商)”最低求助积分说明 828563