M3GAT: A Multi-modal, Multi-task Interactive Graph Attention Network for Conversational Sentiment Analysis and Emotion Recognition

计算机科学 情绪分析 人工智能 情态动词 图形 对话 背景(考古学) 多任务学习 任务(项目管理) 自然语言处理 理论计算机科学 古生物学 哲学 经济 化学 管理 高分子化学 生物 语言学
作者
Yazhou Zhang,Ao Jia,Bo Wang,Peng Zhang,Dongming Zhao,Pu Li,Yuexian Hou,Xiaojia Jin,Dawei Song,Jing Qin
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (1): 1-32 被引量:27
标识
DOI:10.1145/3593583
摘要

Sentiment and emotion, which correspond to long-term and short-lived human feelings, are closely linked to each other, leading to the fact that sentiment analysis and emotion recognition are also two interdependent tasks in natural language processing (NLP). One task often leverages the shared knowledge from another task and performs better when solved in a joint learning paradigm. Conversational context dependency, multi-modal interaction, and multi-task correlation are three key factors that contribute to this joint paradigm. However, none of the recent approaches have considered them in a unified framework. To fill this gap, we propose a multi-modal, multi-task interactive graph attention network, termed M3GAT, to simultaneously solve the three problems. At the heart of the model is a proposed interactive conversation graph layer containing three core sub-modules, which are: (1) local-global context connection for modeling both local and global conversational context, (2) cross-modal connection for learning multi-modal complementary and (3) cross-task connection for capturing the correlation across two tasks. Comprehensive experiments on three benchmarking datasets, MELD, MEISD, and MSED, show the effectiveness of M3GAT over state-of-the-art baselines with the margin of 1.88%, 5.37%, and 0.19% for sentiment analysis, and 1.99%, 3.65%, and 0.13% for emotion recognition, respectively. In addition, we also show the superiority of multi-task learning over the single-task framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫傻姑发布了新的文献求助10
刚刚
shea发布了新的文献求助10
1秒前
金子发布了新的文献求助10
1秒前
zhuyuan完成签到 ,获得积分10
1秒前
1秒前
哈哈完成签到,获得积分10
1秒前
2秒前
codwest发布了新的文献求助10
2秒前
2秒前
2秒前
猪猪侠完成签到,获得积分10
2秒前
fly完成签到,获得积分10
3秒前
正己化人应助Zz采纳,获得10
3秒前
cyj完成签到,获得积分10
3秒前
3秒前
温言发布了新的文献求助10
3秒前
颜依丝完成签到,获得积分10
3秒前
小二郎应助小杨要努力采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助顺心灵寒采纳,获得10
5秒前
林白完成签到,获得积分10
5秒前
yty发布了新的文献求助10
6秒前
6秒前
6秒前
赵志博发布了新的文献求助10
6秒前
123完成签到,获得积分10
7秒前
7秒前
reneeX发布了新的文献求助10
7秒前
JamesPei应助白夜采纳,获得30
8秒前
8秒前
碧蓝可乐发布了新的文献求助10
8秒前
swan完成签到,获得积分10
8秒前
小蘑菇应助fafamimireredo采纳,获得10
9秒前
标致的栾完成签到,获得积分10
9秒前
上官若男应助如你所liao采纳,获得10
9秒前
9秒前
南宫傻姑完成签到,获得积分10
9秒前
10秒前
欢欢发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572213
求助须知:如何正确求助?哪些是违规求助? 3993051
关于积分的说明 12361033
捐赠科研通 3666193
什么是DOI,文献DOI怎么找? 2020525
邀请新用户注册赠送积分活动 1054832
科研通“疑难数据库(出版商)”最低求助积分说明 942261