Artificial intelligence predicts lung cancer radiotherapy response: A meta-analysis

肺癌 医学 荟萃分析 置信区间 危险系数 内科学 放射治疗 接收机工作特性 肿瘤科 出版偏见 癌症
作者
Wenmin Xing,Wenyan Gao,Xiaoling Lv,Zhenlei Zhao,Xiaogang Xu,Zhibing Wu,Genxiang Mao,Jun Chen
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:142: 102585-102585 被引量:7
标识
DOI:10.1016/j.artmed.2023.102585
摘要

Artificial intelligence (AI) technology has clustered patients based on clinical features into sub-clusters to stratify high-risk and low-risk groups to predict outcomes in lung cancer after radiotherapy and has gained much more attention in recent years. Given that the conclusions vary considerably, this meta-analysis was conducted to investigate the combined predictive effect of AI models on lung cancer. This study was performed according to PRISMA guidelines. PubMed, ISI Web of Science, and Embase databases were searched for relevant literature. Outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and local control (LC), were predicted using AI models in patients with lung cancer after radiotherapy, and were used to calculate the pooled effect. Quality, heterogeneity, and publication bias of the included studies were also evaluated. Eighteen articles with 4719 patients were eligible for this meta-analysis. The combined hazard ratios (HRs) of the included studies for OS, LC, PFS, and DFS of lung cancer patients were 2.55 (95 % confidence interval (CI) = 1.73–3.76), 2.45 (95 % CI = 0.78–7.64), 3.84 (95 % CI = 2.20–6.68), and 2.66 (95 % CI = 0.96–7.34), respectively. The combined area under the receiver operating characteristics curve (AUC) of the included articles on OS and LC in patients with lung cancer was 0.75 (95 % CI = 0.67–0.84), and 0.80 (95%CI = 0.0.68–0.95), respectively. The clinical feasibility of predicting outcomes using AI models after radiotherapy in patients with lung cancer was demonstrated. Large-scale, prospective, multicenter studies should be conducted to more accurately predict the outcomes in patients with lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢呼香完成签到 ,获得积分20
2秒前
贰鸟应助hwx431采纳,获得10
3秒前
桃镜灯核完成签到,获得积分10
6秒前
林洛沁完成签到 ,获得积分10
6秒前
壮观的夏云完成签到,获得积分10
7秒前
宇智波白哉完成签到,获得积分10
9秒前
忧郁的依珊完成签到,获得积分10
10秒前
WSY完成签到 ,获得积分10
10秒前
狮子沟核聚变骡子完成签到 ,获得积分10
10秒前
啊标完成签到,获得积分10
11秒前
Legend_完成签到 ,获得积分10
11秒前
吵闹完成签到,获得积分10
13秒前
13秒前
哈哈哈完成签到,获得积分10
13秒前
文耀海完成签到,获得积分10
14秒前
果子关注了科研通微信公众号
14秒前
smin完成签到,获得积分10
14秒前
Hello应助科研通管家采纳,获得10
15秒前
sky同学应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得30
15秒前
李超杰应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
今后应助科研通管家采纳,获得10
16秒前
健忘的荆发布了新的文献求助10
16秒前
毅诚菌完成签到,获得积分10
18秒前
vv完成签到,获得积分10
18秒前
加贝火火完成签到 ,获得积分10
20秒前
gaga发布了新的文献求助20
20秒前
Stageruner完成签到,获得积分10
21秒前
科研人完成签到,获得积分10
21秒前
mrwang发布了新的文献求助200
22秒前
yu完成签到,获得积分10
23秒前
快乐的胖子应助佳远采纳,获得50
23秒前
Kyrie完成签到,获得积分10
24秒前
haha完成签到 ,获得积分10
24秒前
27秒前
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081317
求助须知:如何正确求助?哪些是违规求助? 3620800
关于积分的说明 11487284
捐赠科研通 3336219
什么是DOI,文献DOI怎么找? 1834056
邀请新用户注册赠送积分活动 902868
科研通“疑难数据库(出版商)”最低求助积分说明 821313