Artificial intelligence predicts lung cancer radiotherapy response: A meta-analysis

肺癌 医学 荟萃分析 置信区间 危险系数 内科学 放射治疗 接收机工作特性 肿瘤科 出版偏见 癌症
作者
Wenmin Xing,Wenyan Gao,Xiaoling Lv,Zhenlei Zhao,Xiaogang Xu,Zhibing Wu,Genxiang Mao,Jun Chen
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:142: 102585-102585 被引量:6
标识
DOI:10.1016/j.artmed.2023.102585
摘要

Artificial intelligence (AI) technology has clustered patients based on clinical features into sub-clusters to stratify high-risk and low-risk groups to predict outcomes in lung cancer after radiotherapy and has gained much more attention in recent years. Given that the conclusions vary considerably, this meta-analysis was conducted to investigate the combined predictive effect of AI models on lung cancer. This study was performed according to PRISMA guidelines. PubMed, ISI Web of Science, and Embase databases were searched for relevant literature. Outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and local control (LC), were predicted using AI models in patients with lung cancer after radiotherapy, and were used to calculate the pooled effect. Quality, heterogeneity, and publication bias of the included studies were also evaluated. Eighteen articles with 4719 patients were eligible for this meta-analysis. The combined hazard ratios (HRs) of the included studies for OS, LC, PFS, and DFS of lung cancer patients were 2.55 (95 % confidence interval (CI) = 1.73–3.76), 2.45 (95 % CI = 0.78–7.64), 3.84 (95 % CI = 2.20–6.68), and 2.66 (95 % CI = 0.96–7.34), respectively. The combined area under the receiver operating characteristics curve (AUC) of the included articles on OS and LC in patients with lung cancer was 0.75 (95 % CI = 0.67–0.84), and 0.80 (95%CI = 0.0.68–0.95), respectively. The clinical feasibility of predicting outcomes using AI models after radiotherapy in patients with lung cancer was demonstrated. Large-scale, prospective, multicenter studies should be conducted to more accurately predict the outcomes in patients with lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
initial完成签到,获得积分10
刚刚
1秒前
CruiSk发布了新的文献求助10
1秒前
Mountain完成签到,获得积分10
1秒前
飞翔的荷兰人完成签到,获得积分10
2秒前
2秒前
2秒前
clement发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
朴素完成签到,获得积分10
3秒前
猪猪hero应助曾经冰露采纳,获得10
3秒前
3秒前
gaga完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
大模型应助克莱采纳,获得10
5秒前
5秒前
英俊的铭应助碧蓝香水采纳,获得10
5秒前
和谐的寄凡完成签到,获得积分10
5秒前
所所应助HM采纳,获得10
6秒前
Ray发布了新的文献求助10
6秒前
粗心的蒙蒙完成签到,获得积分10
6秒前
是咸鱼呀发布了新的文献求助10
7秒前
聪明曼凡发布了新的文献求助30
7秒前
zly发布了新的文献求助10
7秒前
LYN完成签到,获得积分10
7秒前
jovrtic发布了新的文献求助20
8秒前
不知完成签到 ,获得积分10
8秒前
莫惜君灬完成签到 ,获得积分10
8秒前
8秒前
帅气的小鸭子完成签到,获得积分10
8秒前
9秒前
凡仔发布了新的文献求助10
9秒前
孙笑川258完成签到,获得积分10
9秒前
张涛发布了新的文献求助10
9秒前
冰魂应助憨憨的小于采纳,获得20
9秒前
瘪瘪完成签到,获得积分10
9秒前
gaga发布了新的文献求助10
9秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872273
求助须知:如何正确求助?哪些是违规求助? 3414526
关于积分的说明 10689720
捐赠科研通 3138874
什么是DOI,文献DOI怎么找? 1731816
邀请新用户注册赠送积分活动 835004
科研通“疑难数据库(出版商)”最低求助积分说明 781624