三元运算
人工神经网络
与非门
计算机科学
闪光灯(摄影)
国家(计算机科学)
非易失性存储器
闪存
逻辑门
电子工程
算法
计算机硬件
人工智能
物理
工程类
光学
程序设计语言
作者
Jin Ho Chang,Jae Seung Woo,Suk‐Kang Sung,Ki‐Whan Song,Woo Young Choi
标识
DOI:10.1109/ted.2024.3390651
摘要
Novel ternary-state vertical NAND (VNAND) flash memory is proposed for high-density and high-accuracy quantized neural networks (QNNs) for the first time in this study. The proposed ternary-state VNAND features an additional current saturation region in transfer curves to implement ternary weights for QNNs using only a single memory cell. It achieves the inference accuracy of 96.06% and 81.04% for the MNIST and CIFAR-10 datasets, respectively, while maintaining high memory density. It is confirmed that the QNN accuracy of the proposed ternary-state VNAND is robust to variations in the threshold voltage ( $\textit{V}_{\text{th}}\text{)}$ and channel hole diameter ( $\textit{d}_{\text{ch}}\text{)}$ .
科研通智能强力驱动
Strongly Powered by AbleSci AI