亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

General Model for Predicting Response of Gas-Sensitive Materials to Target Gas Based on Machine Learning

机器学习 感知器 排名(信息检索) 人工智能 随机森林 计算机科学 多层感知器 阿达布思 人工神经网络 吸附 交叉验证 支持向量机 化学 有机化学
作者
Zi‐Jiang Yang,Yujiao Sun,Shasha Gao,Qiuchen Yu,Yizhe Zhao,Yumeng Huo,Zixin Wan,Sheng Huang,Yanyan Wang,Xiuquan Gu
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (5): 2509-2519 被引量:3
标识
DOI:10.1021/acssensors.4c00186
摘要

Gas sensors play a crucial role in various industries and applications. In recent years, there has been an increasing demand for gas sensors in society. However, the current method for screening gas-sensitive materials is time-, energy-, and cost-consuming. Consequently, an imperative exists to enhance the screening efficiency. In this study, we proposed a collaborative screening strategy through integration of density functional theory and machine learning. Taking zinc oxide (ZnO) as an example, the responsiveness of ZnO to the target gas was determined quickly on the basis of the changes in the electronic state and structure before and after gas adsorption. In this work, the adsorption energy and electronic and structural characteristics of ZnO after adsorbing 24 kinds of gases were calculated. These computed features served as the basis for training a machine learning model. Subsequently, various machine learning and evaluation algorithms were utilized to train the fast screening model. The importance of feature values was evaluated by the AdaBoost, Random Forest, and Extra Trees models. Specifically, charge transfer was assigned importance values of 0.160, 0.127, and 0.122, respectively, ranking as the highest among the 11 features. Following closely was the d-band center, which was presumed to exert influence on electrical conductivity and, consequently, adsorption properties. With 5-fold cross-validation using the Extra Tree accuracy, the 24-sample data set achieved an accuracy of 88%. The 72-sample data set achieved an accuracy of 78% using multilayer perceptron after 5-fold cross-validation, with both data sets exhibiting low standard deviations. This verified the accuracy and reliability of the strategy, showcasing its potential for rapidly screening a material's responsiveness to the target gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助Ninece采纳,获得10
10秒前
18秒前
Ninece发布了新的文献求助10
22秒前
bkagyin应助滕焯采纳,获得10
26秒前
31秒前
滕焯发布了新的文献求助10
35秒前
hahhhhhh2完成签到,获得积分10
43秒前
SciGPT应助momo采纳,获得10
43秒前
53秒前
57秒前
momo发布了新的文献求助10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
岁末完成签到 ,获得积分10
1分钟前
1分钟前
wt发布了新的文献求助10
1分钟前
wt完成签到,获得积分10
2分钟前
cc完成签到,获得积分20
2分钟前
2分钟前
圆圆901234发布了新的文献求助10
2分钟前
无花果应助圆圆901234采纳,获得10
2分钟前
Forever完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
Said1223完成签到,获得积分10
3分钟前
西溪完成签到,获得积分10
4分钟前
Fly完成签到 ,获得积分10
4分钟前
CUN完成签到,获得积分10
4分钟前
LonelyCMA完成签到 ,获得积分0
5分钟前
心灵美语兰完成签到 ,获得积分10
6分钟前
Lucas应助科研通管家采纳,获得10
7分钟前
夏花般灿烂完成签到,获得积分20
7分钟前
7分钟前
7分钟前
北地风情完成签到 ,获得积分10
7分钟前
Mipe完成签到,获得积分10
9分钟前
9分钟前
zsmj23完成签到 ,获得积分0
9分钟前
10分钟前
wdfgggh发布了新的文献求助30
10分钟前
xiaosui完成签到 ,获得积分10
10分钟前
无花果应助滕焯采纳,获得10
11分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811703
求助须知:如何正确求助?哪些是违规求助? 3355978
关于积分的说明 10378893
捐赠科研通 3072955
什么是DOI,文献DOI怎么找? 1687909
邀请新用户注册赠送积分活动 811831
科研通“疑难数据库(出版商)”最低求助积分说明 766877