Deep Learning to Differentiate Benign and Malignant Vertebral Fractures at Multidetector CT

医学 接收机工作特性 放射科 内科学
作者
Sarah C. Foreman,David Schinz,Malek El Husseini,Sophia S. Goller,Jürgen Weißinger,Anna-Sophia Dietrich,Martin Renz,Marie‐Christin Metz,Georg C. Feuerriegel,Benedikt Wiestler,Robert Stahl,Benedikt J. Schwaiger,Marcus R. Makowski,Jan S. Kirschke,Alexandra S. Gersing
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:4
标识
DOI:10.1148/radiol.231429
摘要

Background Differentiating between benign and malignant vertebral fractures poses diagnostic challenges. Purpose To investigate the reliability of CT-based deep learning models to differentiate between benign and malignant vertebral fractures. Materials and Methods CT scans acquired in patients with benign or malignant vertebral fractures from June 2005 to December 2022 at two university hospitals were retrospectively identified based on a composite reference standard that included histopathologic and radiologic information. An internal test set was randomly selected, and an external test set was obtained from an additional hospital. Models used a three-dimensional U-Net encoder-classifier architecture and applied data augmentation during training. Performance was evaluated using the area under the receiver operating characteristic curve (AUC) and compared with that of two residents and one fellowship-trained radiologist using the DeLong test. Results The training set included 381 patients (mean age, 69.9 years ± 11.4 [SD]; 193 male) with 1307 vertebrae (378 benign fractures, 447 malignant fractures, 482 malignant lesions). Internal and external test sets included 86 (mean age, 66.9 years ± 12; 45 male) and 65 (mean age, 68.8 years ± 12.5; 39 female) patients, respectively. The better-performing model of two training approaches achieved AUCs of 0.85 (95% CI: 0.77, 0.92) in the internal and 0.75 (95% CI: 0.64, 0.85) in the external test sets. Including an uncertainty category further improved performance to AUCs of 0.91 (95% CI: 0.83, 0.97) in the internal test set and 0.76 (95% CI: 0.64, 0.88) in the external test set. The AUC values of residents were lower than that of the best-performing model in the internal test set (AUC, 0.69 [95% CI: 0.59, 0.78] and 0.71 [95% CI: 0.61, 0.80]) and external test set (AUC, 0.70 [95% CI: 0.58, 0.80] and 0.71 [95% CI: 0.60, 0.82]), with significant differences only for the internal test set (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱问安发布了新的文献求助10
刚刚
shyxia完成签到 ,获得积分10
刚刚
852应助干不了一点采纳,获得10
1秒前
1秒前
西鱼完成签到,获得积分10
3秒前
JamesPei应助yly采纳,获得10
3秒前
ocean完成签到,获得积分10
3秒前
4秒前
z7486发布了新的文献求助10
4秒前
新司机完成签到,获得积分10
5秒前
是阿刁完成签到,获得积分10
5秒前
ladadada发布了新的文献求助10
5秒前
Ingram完成签到,获得积分10
5秒前
阿发发布了新的文献求助10
5秒前
酷波er应助yutou采纳,获得10
9秒前
星辰大海应助朱问安采纳,获得10
9秒前
10秒前
10秒前
猫的薛定二完成签到,获得积分10
11秒前
黑白和完成签到 ,获得积分10
12秒前
淡然伊完成签到,获得积分20
12秒前
13秒前
hong完成签到,获得积分10
13秒前
14秒前
锈了的xuebxuebi雪碧完成签到,获得积分10
14秒前
lh345769764发布了新的文献求助10
15秒前
SYLH应助小chen呀采纳,获得20
16秒前
CipherSage应助淡然伊采纳,获得10
16秒前
zwhy驳回了打打应助
17秒前
BIESHUOHUA发布了新的文献求助10
18秒前
大个应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
19秒前
大模型应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
只A不B应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133747
求助须知:如何正确求助?哪些是违规求助? 3670574
关于积分的说明 11606658
捐赠科研通 3366901
什么是DOI,文献DOI怎么找? 1849786
邀请新用户注册赠送积分活动 913325
科研通“疑难数据库(出版商)”最低求助积分说明 828563