亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weather-based logistic regression models for predicting wheat head blast epidemics

逻辑回归 统计 回归分析 回归 主管(地质) 数学 生物 古生物学
作者
Monalisa De Cól,Maurício Rizzato Coelho,Emerson M. Del Ponte
出处
期刊:Plant Disease [American Phytopathological Society]
卷期号:108 (7): 2206-2213
标识
DOI:10.1094/pdis-11-23-2513-re
摘要

Wheat head blast is a major disease of wheat in the Brazilian Cerrado. Empirical models for predicting epidemics were developed using data from field trials conducted in Patos de Minas (2013 to 2019) and trials conducted across 10 other sites (2012 to 2020) in Brazil, resulting in 143 epidemics, with each being classified as either outbreak (≥20% head blast incidence) or nonoutbreak. Daily weather variables were collected from the National Aeronautics and Space Administration (NASA) Prediction of Worldwide Energy Resources (POWER) website and summarized for each epidemic. Wheat heading date (WHD) served to define four time windows, with each comprising two 7-day intervals (before and after WHD), which combined with weather-based variables resulted in 36 predictors (nine weather variables × four windows). Logistic regression models were fitted to binary data, with variable selection using least absolute shrinkage and selection operator (LASSO) and sequentially best subset analyses. The models were validated using the leave-one-out cross-validation (LOOCV) technique, and their statistical performance was compared. One model was selected, implemented in a 24-year series, and assessed by experts and literature. Models with two to five predictors showed accuracies between 0.80 and 0.85, sensitivities from 0.80 to 0.91, specificities from 0.72 to 0.86, and area under the curve (AUC) from 0.89 to 0.91. The accuracy of LOOCV ranged from 0.76 to 0.81. The model applied to a historical series included temperature and relative humidity in preheading date, as well as postheading precipitation. The model accurately predicted the occurrence of outbreaks, aligning closely with real-world observations, specifically tailored for locations with tropical and subtropical climates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
学不完了完成签到 ,获得积分10
7秒前
zyh发布了新的文献求助10
11秒前
sunny完成签到 ,获得积分10
26秒前
ZL发布了新的文献求助10
36秒前
在水一方应助ZL采纳,获得10
42秒前
打打应助紫色奶萨采纳,获得10
48秒前
漱石枕流完成签到 ,获得积分10
48秒前
59秒前
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
liuqizong123完成签到,获得积分10
1分钟前
无糖可乐发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
ZL发布了新的文献求助10
1分钟前
wanci应助ZL采纳,获得10
2分钟前
楠楠2001完成签到 ,获得积分10
2分钟前
2分钟前
ZL发布了新的文献求助10
2分钟前
小二郎应助ZL采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
ZL发布了新的文献求助10
3分钟前
星际舟完成签到,获得积分10
3分钟前
糖伯虎完成签到 ,获得积分10
3分钟前
4分钟前
安静的招牌完成签到,获得积分10
4分钟前
4分钟前
4分钟前
rose发布了新的文献求助10
4分钟前
twk发布了新的文献求助10
4分钟前
不一样发布了新的文献求助10
4分钟前
科研通AI5应助twk采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
Hillson完成签到,获得积分10
5分钟前
科研通AI6应助xiw采纳,获得10
5分钟前
秾晓豆完成签到,获得积分10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198895
求助须知:如何正确求助?哪些是违规求助? 4379750
关于积分的说明 13638478
捐赠科研通 4236026
什么是DOI,文献DOI怎么找? 2323740
邀请新用户注册赠送积分活动 1321740
关于科研通互助平台的介绍 1272931