Atomic layer deposition of metal oxide buffer layer enabling the fabrication of high performance large area perovskite solar cells

材料科学 原子层沉积 光电子学 钙钛矿(结构) X射线光电子能谱 纳米技术 能量转换效率 扫描电子显微镜 制作 薄膜 光致发光 化学工程 复合材料 医学 替代医学 病理 工程类
作者
Zhigang Qu,Yang Zhao,Fei Ma,Jingbi You
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
标识
DOI:10.7498/aps.73.20240218
摘要

Perovskite solar cells have been widely recognized as the most promising new type of photovoltaic technology due to its rapid development of power conversion efficiency from 3.8% to over 26% in merely fifteen years. However, the high performances were achieved mainly on small area cells with active area lower than 0.1 cm<sup>2</sup>. When enlarging the active area of perovskite solar cells, the efficiency fell dramatically. How to reduce the gap between performances of small area and large area cells gradually becomes a critical point in the path towards the commercialization of perovskite photovoltaic technology. Herein, a strategy to pre-grow a thin layer of TiO<sub>2</sub> on rough FTO substrate by atomic layer deposition method before spin-coating SnO<sub>2</sub> nanoparticles was developed. The FTO substrate could be covered completely by TiO<sub>2</sub> due to the intrinsic conformal film growth mode of atomic layer deposition, thus the direct contact between local protuberance of FTO and perovskite layer could be prevented and the current leakage phenomenon could be prevented. X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and dark current measurement further proved this point. Thanks to the approach, the repeatability and consistency of the small area cell fabrication technology on the same substrate were ameliorated obviously. The improved electron transport process revealed by photoluminescence results and incident light management process revealed by external quantum efficiency results also brought better solar cell performances. More importantly, highly efficient 0.5 cm<sup>2</sup> large area perovskite solar cells were fabricated through optimization of TiO<sub>2</sub> thicknesses. When growing 200 cycles TiO<sub>2</sub> (~9 nm thickness) using atomic layer deposition technology, the champion large area perovskite solar cell possessed a power conversion efficiency as high as 24.8% (certified 24.65%). The device performances also showed excellent repeatability between different fabrication batches. The perovskite solar cell with atomic layer deposited TiO<sub>2</sub> as buffer layer could retain over 95% of its initial efficiency after storage for 1500 hours under nitrogen atmosphere. The technique proposed in this paper could be helpful for the fabrication of perovskite solar cell modules in the realistic photovoltaic market and could be potentially extended to the large area fabrication of other perovskite optoelectronic devices such as light emitting diode, laser and detector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kong完成签到 ,获得积分10
3秒前
包容的海豚完成签到 ,获得积分10
4秒前
6秒前
7秒前
9秒前
12秒前
李阳阳发布了新的文献求助10
14秒前
852应助许问采纳,获得10
14秒前
15秒前
sunwx完成签到,获得积分10
16秒前
17秒前
18秒前
研友_ngKqrn发布了新的文献求助10
19秒前
19秒前
雨中漫步应助lcm采纳,获得10
20秒前
娇气的书桃完成签到,获得积分10
20秒前
21秒前
xiaolanou发布了新的文献求助10
25秒前
25秒前
Yolo发布了新的文献求助10
25秒前
labern完成签到,获得积分10
26秒前
26秒前
27秒前
今后应助wch071采纳,获得10
27秒前
28秒前
labern发布了新的文献求助10
30秒前
章鱼发布了新的文献求助10
31秒前
XxxxxxENT完成签到,获得积分10
32秒前
32秒前
wwx发布了新的文献求助10
34秒前
啦啦啦啦啦完成签到 ,获得积分20
35秒前
年轻的代秋完成签到,获得积分10
36秒前
yufeifei6发布了新的文献求助30
38秒前
39秒前
NexusExplorer应助wwx采纳,获得10
39秒前
40秒前
41秒前
41秒前
CY发布了新的文献求助20
42秒前
自信翠彤关注了科研通微信公众号
43秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2449920
求助须知:如何正确求助?哪些是违规求助? 2124146
关于积分的说明 5404495
捐赠科研通 1852858
什么是DOI,文献DOI怎么找? 921430
版权声明 562233
科研通“疑难数据库(出版商)”最低求助积分说明 492923