已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting and Preventing Hallucinations in Large Vision Language Models

幻觉 心理学 人工智能 认知心理学 计算机科学 计算机视觉 精神科
作者
Anisha Gunjal,Jihan Yin,Erhan Bas
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (16): 18135-18143 被引量:37
标识
DOI:10.1609/aaai.v38i16.29771
摘要

Instruction tuned Large Vision Language Models (LVLMs) have significantly advanced in generalizing across a diverse set of multi-modal tasks, especially for Visual Question Answering (VQA). However, generating detailed responses that are visually grounded is still a challenging task for these models. We find that even the current state-of-the-art LVLMs (InstructBLIP) still contain a staggering 30 percent of the hallucinatory text in the form of non-existent objects, unfaithful descriptions, and inaccurate relationships. To address this, we introduce M-HalDetect, a Multimodal Hallucination Detection Dataset that can be used to train and benchmark models for hallucination detection and prevention. M-HalDetect consists of 16k fine-grained annotations on VQA examples, making it the first comprehensive multi-modal hallucination detection dataset for detailed image descriptions. Unlike previous work that only consider object hallucination, we additionally annotate both entity descriptions and relationships that are unfaithful. To demonstrate the potential of this dataset for hallucination prevention, we optimize InstructBLIP through our novel Fine-grained Direct Preference Optimization (FDPO). We also train fine-grained multi-modal reward models from InstructBLIP and evaluate their effectiveness with best-of-n rejection sampling (RS). We perform human evaluation on both FDPO and rejection sampling, and find that they reduce hallucination rates in InstructBLIP by 41% and 55% respectively. We also find that our reward model generalizes to other multi-modal models, reducing hallucinations in LLaVA and mPLUG-OWL by 15% and 57% respectively, and has strong correlation with human evaluated accuracy scores. The dataset is available at https://github.com/hendryx-scale/mhal-detect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助Naza1119采纳,获得20
2秒前
科研通AI5应助orchid采纳,获得10
3秒前
斯文败类应助六沉采纳,获得10
4秒前
SMULJL发布了新的文献求助10
5秒前
相信...就好完成签到 ,获得积分10
5秒前
tian完成签到,获得积分20
7秒前
10秒前
10秒前
YuCheng完成签到,获得积分10
11秒前
Cameron完成签到,获得积分10
13秒前
15秒前
15秒前
明理的怜翠完成签到 ,获得积分10
16秒前
ZhouYW应助ifegiugfieugfig采纳,获得10
17秒前
17秒前
18秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
20秒前
猪猪hero应助独眼采纳,获得10
20秒前
杨涛完成签到,获得积分10
20秒前
21秒前
栗子球发布了新的文献求助10
21秒前
21秒前
orchid发布了新的文献求助10
22秒前
笑笑发布了新的文献求助10
23秒前
清脆糖豆完成签到,获得积分10
24秒前
婷婷小笑应助charlie67373采纳,获得10
25秒前
26秒前
高c发布了新的文献求助30
26秒前
26秒前
倪永孝发布了新的文献求助10
27秒前
科研通AI5应助踏实的老四采纳,获得10
28秒前
sadf完成签到,获得积分20
28秒前
29秒前
慕青应助顺毛大帝采纳,获得10
29秒前
顾矜应助manguang采纳,获得10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436