Versatile and recyclable double-network PVA/cellulose hydrogels for strain sensors and triboelectric nanogenerators under harsh conditions

自愈水凝胶 材料科学 摩擦电效应 柔性电子器件 数码产品 纳米技术 复合材料 电气工程 高分子化学 工程类
作者
Yaquan Wang,Yuan Zhang,Peng Ren,Simiao Yu,Peng Cui,Christian B. Nielsen,Isaac Abrahams,Joe Briscoe,Yao Lu
出处
期刊:Nano Energy [Elsevier BV]
卷期号:125: 109599-109599 被引量:48
标识
DOI:10.1016/j.nanoen.2024.109599
摘要

Versatile and recyclable conductive hydrogels with long-term environmental adaptability and mechanical stability have attracted tremendous attention in wearable smart electronics. Here, double-network (DN) polyvinyl alcohol (PVA)/cellulose hydrogels were constructed after introducing a conductive rigid cellulose/Zn2+/Ca2+ network into a soft PVA/borax network. The resultant hydrogels possessed good mechanical and self-adhesive properties, along with transparency, recyclability, and remarkable resistance to freezing. They showed 30-day non-drying properties due to the presence of hygroscopic salts through a dynamic moisture adsorption and desorption process. Dehydrated hydrogels can return to their original states via self-regeneration under high relative humidity. Hydrogel-based strain sensors retained good sensitivity and a wide sensing range during the wide working temperature ranging from -40 °C to 50 °C and after recycling. Additionally, conductive hydrogels were integrated into triboelectric nanogenerators (TENGs) functioning as energy harvesters for powering electronics. TENGs retained stable electrical outputs even under harsh conditions and after recycling. Hydrogels were also assembled into flexible self-powered biomechanical sensors and tactile sensors. Thermally reversible interactions in composite hydrogels enabled their good recyclability, thereby reducing economic costs and environmental impacts caused by e-wastes. This work demonstrates the great potential of versatile and recyclable hydrogels with good environmental and mechanical stability in wearable smart electronics under harsh conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助笑点低的文轩采纳,获得10
1秒前
democienceek发布了新的文献求助10
1秒前
2秒前
CChi0923完成签到,获得积分10
2秒前
chenjie发布了新的文献求助10
2秒前
大雄先生发布了新的文献求助10
3秒前
坦率的尔丝完成签到,获得积分10
3秒前
可爱的函函应助campus采纳,获得10
5秒前
5秒前
6秒前
6秒前
FashionBoy应助调皮的小凝采纳,获得10
7秒前
科研通AI6应助第七班采纳,获得10
7秒前
9秒前
yyds完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
爆米花应助chenjie采纳,获得10
13秒前
14秒前
bo.Y发布了新的文献求助10
14秒前
15秒前
打打应助wuhao0118采纳,获得10
15秒前
苹果邪欢发布了新的文献求助10
15秒前
1111完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
aaaaa发布了新的文献求助10
17秒前
18秒前
月亮发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
21秒前
超chao发布了新的文献求助30
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4677127
求助须知:如何正确求助?哪些是违规求助? 4054677
关于积分的说明 12538046
捐赠科研通 3748783
什么是DOI,文献DOI怎么找? 2070651
邀请新用户注册赠送积分活动 1099681
科研通“疑难数据库(出版商)”最低求助积分说明 979311