化学
环加成
树枝状大分子
组合化学
立体化学
点击化学
有机化学
催化作用
作者
Zhiping Liu,Fanny Demontrond,Anne Imberty,Andrew C.‐H. Sue,Sébastien Vidal,Hongxia Zhao
标识
DOI:10.1016/j.cclet.2022.107872
摘要
Macrocycle-based glycoclusters, on account of their promising anti-adhesive properties against bacteria, are potential therapeutic alternatives to classic antibiotics through the much less explored anti-adhesive strategy. In this study, a series of constitutionally-pure pentavalent glycoclusters was prepared by conjugating assorted azido-carbohydrates onto a penta-propargyl rim-differentiated pillar[5]arene (RD-P[5]) scaffold through Cu(I)-catalyzed azide–alkyne cycloaddition “click” reactions. Their binding towards therapeutically relevant bacterial lectins, such as LecA and LecB from Pseudomonas aeruginosa and concanavalin A (ConA), were evaluated subsequently by isothermal titration calorimetric studies. Most of these isomer-free RD-P[5] pentavalent glycoclusters, except the fucosylated ones, display good affinities to lectins. Nonetheless, the dissociation constants observed are similar to those displayed by an analogous pentavalent glycocluster consisting of four P[5] constitutional isomers, in which the RD-P[5] component merely accounts for 7% in the mixture. Our results revealed that high constitutional purity is not essential for achieving effective multivalent interactions between P[5]-based glycoclusters and lectins, presumably as a result of the conformationally labile nature of the P[5] scaffold. This information provides valuable design principles for low-cost and facile syntheses of glycosylated P[5]s for biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI