Superlow Power Consumption Artificial Synapses Based on WSe 2 Quantum Dots Memristor for Neuromorphic Computing

记忆电阻器 神经形态工程学 材料科学 光电子学 量子点 电阻随机存取存储器 神经促进 计算机科学 电压 人工神经网络 电子工程 兴奋性突触后电位 电气工程 人工智能 神经科学 工程类 心理学 抑制性突触后电位
作者
Zhongrong Wang,Wei Wang,Pan Liu,Gongjie Liu,Jiahang Li,Jianhui Zhao,Zhenyu Zhou,Jingjuan Wang,Yifei Pei,Zhen Zhao,Jiaxin Li,Lei Wang,Zixuan Jian,Yichao Wang,Guo Jianxin,Xiaobing Yan
出处
期刊:Research [American Association for the Advancement of Science]
卷期号:2022 被引量:14
标识
DOI:10.34133/2022/9754876
摘要

As the emerging member of zero-dimension transition metal dichalcogenide, WSe2 quantum dots (QDs) have been applied to memristors and exhibited better resistance switching characteristics and miniaturization size. However, low power consumption and high reliability are still challenges for WSe2 QDs-based memristors as synaptic devices. Here, we demonstrate a high-performance, superlow power consumption memristor device with the structure of Ag/WSe2 QDs/La0.3Sr0.7MnO3/SrTiO3. The device displays excellent resistive switching memory behavior with a ROFF/RON ratio of ~5 × 103, power consumption per switching as low as 0.16 nW, very low set, and reset voltage of ~0.52 V and~ -0.19 V with excellent cycling stability, good reproducibility, and decent data retention capability. The superlow power consumption characteristic of the device is further proved by the method of density functional theory calculation. In addition, the influence of pulse amplitude, duration, and interval was studied to gradually modulating the conductance of the device. The memristor has also been demonstrated to simulate different functions of artificial synapses, such as excitatory postsynaptic current, spike timing-dependent plasticity, long-term potentiation, long-term depression, and paired-pulse facilitation. Importantly, digit recognition ability based on the WSe2 QDs device is evaluated through a three-layer artificial neural network, and the digit recognition accuracy after 40 times of training can reach up to 94.05%. This study paves a new way for the development of memristor devices with advanced significance for future low power neuromorphic computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助ym采纳,获得30
1秒前
李健的小迷弟应助chen采纳,获得10
1秒前
2秒前
2秒前
3秒前
打发打发的发到付电费完成签到,获得积分10
7秒前
7秒前
kk发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
loen完成签到,获得积分10
10秒前
zho发布了新的文献求助30
11秒前
棉花糖完成签到 ,获得积分20
12秒前
14秒前
15秒前
Akim应助吃土豆的番茄采纳,获得10
15秒前
DT搞科研完成签到 ,获得积分10
16秒前
要减肥小小完成签到,获得积分10
17秒前
17秒前
17秒前
Ma_Fangru完成签到,获得积分10
20秒前
吴子冰发布了新的文献求助10
20秒前
水木年华完成签到,获得积分10
20秒前
美啊美发布了新的文献求助10
21秒前
21秒前
21秒前
23秒前
打打应助七个小矮人采纳,获得10
25秒前
美啊美完成签到,获得积分10
26秒前
liuguohua126完成签到,获得积分10
26秒前
27秒前
Shamray发布了新的文献求助10
29秒前
传奇3应助小禾一定行采纳,获得10
31秒前
gug发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
Freeaman完成签到,获得积分10
33秒前
34秒前
welbeck完成签到,获得积分10
35秒前
36秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864457
求助须知:如何正确求助?哪些是违规求助? 3406903
关于积分的说明 10651633
捐赠科研通 3130793
什么是DOI,文献DOI怎么找? 1726618
邀请新用户注册赠送积分活动 831873
科研通“疑难数据库(出版商)”最低求助积分说明 780051