已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Weakly Supervised Learning using Attention gates for colon cancer histopathological image segmentation

计算机科学 人工智能 分割 深度学习 稳健性(进化) 机器学习 数字化病理学 模式识别(心理学) 过程(计算) 人工神经网络 生物化学 基因 操作系统 化学
作者
Ahmed Ben Hamida,Maxime Devanne,Jonathan Weber,Caroline Truntzer,Valentin Dérangère,François Ghiringhelli,Germain Forestier,Cédric Wemmert
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:133: 102407-102407 被引量:8
标识
DOI:10.1016/j.artmed.2022.102407
摘要

Recently, Artificial Intelligence namely Deep Learning methods have revolutionized a wide range of domains and applications. Besides, Digital Pathology has so far played a major role in the diagnosis and the prognosis of tumors. However, the characteristics of the Whole Slide Images namely the gigapixel size, high resolution and the shortage of richly labeled samples have hindered the efficiency of classical Machine Learning methods. That goes without saying that traditional methods are poor in generalization to different tasks and data contents. Regarding the success of Deep learning when dealing with Large Scale applications, we have resorted to the use of such models for histopathological image segmentation tasks. First, we review and compare the classical UNet and Att-UNet models for colon cancer WSI segmentation in a sparsely annotated data scenario. Then, we introduce novel enhanced models of the Att-UNet where different schemes are proposed for the skip connections and spatial attention gates positions in the network. In fact, spatial attention gates assist the training process and enable the model to avoid irrelevant feature learning. Alternating the presence of such modules namely in our Alter-AttUNet model adds robustness and ensures better image segmentation results. In order to cope with the lack of richly annotated data in our AiCOLO colon cancer dataset, we suggest the use of a multi-step training strategy that also deals with the WSI sparse annotations and unbalanced class issues. All proposed methods outperform state-of-the-art approaches but Alter-AttUNet generates the best compromise between accurate results and light network. The model achieves 95.88% accuracy with our sparse AiCOLO colon cancer datasets. Finally, to evaluate and validate our proposed architectures we resort to publicly available WSI data: the NCT-CRC-HE-100K, the CRC-5000 and the Warwick colon cancer histopathological dataset. Respective accuracies of 99.65%, 99.73% and 79.03% were reached. A comparison with state-of-art approaches is established to view and compare the key solutions for histopathological image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
科研通AI5应助ZHH采纳,获得10
4秒前
5秒前
dandna完成签到 ,获得积分10
7秒前
orixero应助baixiazi采纳,获得10
7秒前
蔓越莓蛋糕完成签到 ,获得积分10
9秒前
AA1Z发布了新的文献求助10
9秒前
阿白发布了新的文献求助10
9秒前
薛wen晶完成签到 ,获得积分10
12秒前
Mercury完成签到,获得积分10
14秒前
Irene完成签到,获得积分10
14秒前
15秒前
科研通AI5应助Yy采纳,获得10
16秒前
慧慧完成签到,获得积分10
16秒前
19秒前
JW完成签到,获得积分10
22秒前
wwwcz完成签到,获得积分10
22秒前
景穆发布了新的文献求助10
22秒前
23秒前
共享精神应助景穆采纳,获得10
29秒前
小娄娄娄发布了新的文献求助10
37秒前
baixiazi关注了科研通微信公众号
37秒前
李明姿完成签到,获得积分10
38秒前
39秒前
40秒前
41秒前
boytoa完成签到,获得积分10
43秒前
44秒前
Yy完成签到,获得积分10
44秒前
46秒前
wtian发布了新的文献求助10
46秒前
烟花应助不知道采纳,获得10
46秒前
dt发布了新的文献求助10
47秒前
mkljl发布了新的文献求助10
48秒前
小娄娄娄完成签到,获得积分10
48秒前
Yy发布了新的文献求助10
49秒前
外向半青完成签到,获得积分10
52秒前
54秒前
huang完成签到 ,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782478
求助须知:如何正确求助?哪些是违规求助? 3327929
关于积分的说明 10233784
捐赠科研通 3042909
什么是DOI,文献DOI怎么找? 1670261
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758904