Intelligent fault diagnosis of rolling mills based on dual attention- guided deep learning method under imbalanced data conditions

卷积神经网络 断层(地质) 可靠性(半导体) 人工智能 对偶(语法数字) 计算机科学 轧机 深度学习 特征提取 特征(语言学) 人工神经网络 模式识别(心理学) 振动 信号(编程语言) 工程类 数据挖掘 艺术 文学类 地震学 地质学 机械工程 功率(物理) 语言学 物理 哲学 量子力学 程序设计语言
作者
Peiming Shi,Hao Gao,Yue Yu,Xuefang Xu,Dongying Han
出处
期刊:Measurement [Elsevier BV]
卷期号:204: 111993-111993 被引量:6
标识
DOI:10.1016/j.measurement.2022.111993
摘要

As an important link in the steel production chain, the health of the rolling mill directly affects the steel production. Therefore, the study of rolling mill fault diagnosis methods is of great significance to improve the continuity, reliability and safety of production. However, in the case of uneven data distribution, in order to improve the recognition performance, the traditional fault diagnosis method has developed the deep network architecture of convolutional neural network, which is not easy to obtain accurate fault characteristics and it is difficult to achieve better recognition accuracy. Aiming at these problems, we propose a rolling mill fault diagnosis method based on time–frequency image and Dual Attention-guided Feature Enhancement Network (DAFEN). First of all, the original one-dimensional vibration signal is converted into two-dimensional time–frequency images and used as the input of the network, and then the DAFAE is designed to analyze and integrate all convolutional features to complete the fault identification, in order to verify the superiority of the proposed method, we verified based on balanced datasets and imbalanced datasets, and our model was at least 0.71% and 1.43% higher than the highest accuracy fault classification results of other advanced CNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
99999sun完成签到,获得积分10
刚刚
懵懂的苡发布了新的文献求助10
刚刚
完美世界应助iVANPENNY采纳,获得150
刚刚
搜集达人应助carcar采纳,获得10
1秒前
1秒前
古果发布了新的文献求助10
1秒前
SYLH应助科研通管家采纳,获得10
2秒前
谈理想完成签到,获得积分10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
卢本伟牛逼完成签到,获得积分10
2秒前
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
l玖应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
l玖应助科研通管家采纳,获得10
3秒前
3秒前
在水一方应助科研通管家采纳,获得20
3秒前
田様应助科研通管家采纳,获得10
3秒前
随遇而安应助科研通管家采纳,获得20
4秒前
彭于彦祖应助科研通管家采纳,获得10
4秒前
星星boy完成签到,获得积分10
4秒前
4秒前
冯123发布了新的文献求助10
4秒前
5秒前
6秒前
玛卡巴卡完成签到,获得积分10
7秒前
汉堡包应助又又采纳,获得10
7秒前
完美世界应助斯文的慕儿采纳,获得10
8秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871