亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploiting Light Polarization for Deep HDR Imaging from a Single Exposure

计算机科学 人工智能 计算机视觉 色调映射 高动态范围 偏振器 高动态范围成像 卷积神经网络 计算摄影 动态范围 图像处理 光学 图像(数学) 物理 双折射
作者
Mara Pistellato,Tehreem Fatima,Michael Wimmer
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (12): 5370-5370
标识
DOI:10.3390/s23125370
摘要

In computational photography, high dynamic range (HDR) imaging refers to the family of techniques used to recover a wider range of intensity values compared to the limited range provided by standard sensors. Classical techniques consist of acquiring a scene-varying exposure to compensate for saturated and underexposed regions, followed by a non-linear compression of intensity values called tone mapping. Recently, there has been a growing interest in estimating HDR images from a single exposure. Some methods exploit data-driven models trained to estimate values outside the camera’s visible intensity levels. Others make use of polarimetric cameras to reconstruct HDR information without exposure bracketing. In this paper, we present a novel HDR reconstruction method that employs a single PFA (polarimetric filter array) camera with an additional external polarizer to increase the scene’s dynamic range across the acquired channels and to mimic different exposures. Our contribution consists of a pipeline that effectively combines standard HDR algorithms based on bracketing and data-driven solutions designed to work with polarimetric images. In this regard, we present a novel CNN (convolutional neural network) model that exploits the underlying mosaiced pattern of the PFA in combination with the external polarizer to estimate the original scene properties, and a second model designed to further improve the final tone mapping step. The combination of such techniques enables us to take advantage of the light attenuation given by the filters while producing an accurate reconstruction. We present an extensive experimental section in which we validate the proposed method on both synthetic and real-world datasets specifically acquired for the task. Quantitative and qualitative results show the effectiveness of the approach when compared to state-of-the-art methods. In particular, our technique exhibits a PSNR (peak signal-to-noise ratio) on the whole test set equal to 23 dB, which is 18% better with respect to the second-best alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得20
8秒前
48秒前
BUDD完成签到 ,获得积分10
1分钟前
孙燕应助小曾努力先躺平采纳,获得10
1分钟前
Xiaojiu完成签到 ,获得积分10
2分钟前
Orange应助科研通管家采纳,获得30
2分钟前
33333完成签到,获得积分10
2分钟前
pjxxx完成签到 ,获得积分10
3分钟前
思源应助cctv18采纳,获得10
3分钟前
cctv18给小小手冰凉的求助进行了留言
3分钟前
小路完成签到,获得积分10
3分钟前
4分钟前
莱芙完成签到 ,获得积分10
4分钟前
852应助科研通管家采纳,获得10
4分钟前
无花果应助cctv18采纳,获得10
4分钟前
yscjlxw547发布了新的文献求助10
4分钟前
4分钟前
4分钟前
舒服的问雁完成签到,获得积分10
5分钟前
狮子发布了新的文献求助10
5分钟前
科研通AI5应助cctv18采纳,获得10
5分钟前
5分钟前
tsy发布了新的文献求助10
5分钟前
tsy完成签到,获得积分10
5分钟前
Artin完成签到,获得积分10
6分钟前
小马甲应助重要纸飞机采纳,获得10
6分钟前
科研通AI5应助cctv18采纳,获得10
6分钟前
6分钟前
6分钟前
科研通AI5应助狮子采纳,获得10
6分钟前
聪明的灵寒完成签到 ,获得积分10
6分钟前
7分钟前
8分钟前
8分钟前
8分钟前
狮子发布了新的文献求助10
8分钟前
8分钟前
瞿寒完成签到,获得积分10
8分钟前
9分钟前
孙燕应助重要纸飞机采纳,获得10
9分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833784
求助须知:如何正确求助?哪些是违规求助? 3376248
关于积分的说明 10492514
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771831