亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a predictive model of venous thromboembolism recurrence in anticoagulated cancer patients using machine learning

医学 肺栓塞 深静脉 内科学 癌症 血栓形成 逻辑回归 静脉血栓形成 逐步回归 静脉血栓栓塞
作者
Andrés J. Muñoz Martín,Juan Carlos Souto,Ramón Lecumberri,Berta Obispo,Antonio Sánchez,Jorge Aparicio,Cristina Aguayo,David Gutiérrez,Andrés García‐Palomo,Víctor Fanjul,Carlos Del Rio‐Bermudez,María Carmen Viñuela-Benéitez,Miguel Ángel Hernández-Presa
出处
期刊:Thrombosis Research [Elsevier]
卷期号:228: 181-188 被引量:28
标识
DOI:10.1016/j.thromres.2023.06.015
摘要

Introduction Patients with cancer and venous thromboembolism (VTE) show a high risk of VTE recurrence during anticoagulant treatment. This study aimed to develop a predictive model to assess the risk of VTE recurrence within 6 months at the moment of primary VTE diagnosis in these patients. Materials and methods Using the EHRead® technology, based on Natural Language Processing (NLP) and machine learning (ML), the unstructured data in electronic health records from 9 Spanish hospitals between 2014 and 2018 were extracted. Both clinically- and ML-driven feature selection were performed to identify predictors for VTE recurrence. Logistic regression (LR), decision tree (DT), and random forest (RF) algorithms were used to train different prediction models, which were subsequently validated in a hold-out data set. Results A total of 16,407 anticoagulated cancer patients with diagnosis of VTE were identified (54.4 % male and median age 70). Deep vein thrombosis, pulmonary embolism and metastases were observed in 67.2 %, 26.6 %, and 47.7 % of the patients, respectively. During the study follow-up, 11.4 % of the patients developed a recurrent VTE, being more frequent in patients with lung cancer. Feature selection and model training based on ML identified primary pulmonary embolism, deep vein thrombosis, metastasis, adenocarcinoma, hemoglobin and serum creatinine levels, platelet and leukocyte count, family history of VTE, and patients' age as predictors of VTE recurrence within 6 months of VTE diagnosis. The LR model had an AUC-ROC (95 % CI) of 0.66 (0.61, 0.70), the DT of 0.69 (0.65, 0.72) and the RF of 0.68 (0.63, 0.72). Conclusions This is the first ML-based predictive model designed to predict 6-months VTE recurrence in patients with cancer. These results hold great potential to assist clinicians to identify the high-risk patients and improve their clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鱼完成签到 ,获得积分10
7秒前
悦耳的锦程完成签到 ,获得积分10
7秒前
NancyDee完成签到,获得积分10
8秒前
10秒前
11秒前
手撕英语发布了新的文献求助10
14秒前
记录者完成签到 ,获得积分10
16秒前
sfc999发布了新的文献求助10
16秒前
能干梦芝完成签到,获得积分10
23秒前
dynamoo完成签到,获得积分10
26秒前
29秒前
32秒前
脑洞疼应助ling采纳,获得10
33秒前
Rain发布了新的文献求助10
36秒前
从你的全世界路过完成签到,获得积分10
36秒前
手撕英语完成签到,获得积分10
38秒前
zzn发布了新的文献求助10
41秒前
yunxiao完成签到 ,获得积分10
43秒前
44秒前
staoG完成签到,获得积分10
45秒前
Tendency完成签到 ,获得积分10
50秒前
Jeneration完成签到 ,获得积分10
52秒前
小冯完成签到 ,获得积分10
53秒前
54秒前
JamesPei应助科研通管家采纳,获得10
55秒前
科目三应助皮灵犀采纳,获得10
56秒前
冷艳的语雪完成签到 ,获得积分10
1分钟前
润润润完成签到 ,获得积分10
1分钟前
华仔应助浮浮世世采纳,获得10
1分钟前
charlie完成签到,获得积分10
1分钟前
Hello应助一点采纳,获得10
1分钟前
1分钟前
小福同学完成签到 ,获得积分10
1分钟前
一点发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助ibuprofen采纳,获得10
1分钟前
夏日完成签到 ,获得积分10
1分钟前
哈基米德应助欣欣采纳,获得20
1分钟前
NexusExplorer应助yr采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422398
求助须知:如何正确求助?哪些是违规求助? 4537287
关于积分的说明 14156964
捐赠科研通 4453838
什么是DOI,文献DOI怎么找? 2443106
邀请新用户注册赠送积分活动 1434452
关于科研通互助平台的介绍 1411546