Development of a predictive model of venous thromboembolism recurrence in anticoagulated cancer patients using machine learning

医学 肺栓塞 深静脉 内科学 癌症 血栓形成 逻辑回归 静脉血栓形成 逐步回归 静脉血栓栓塞
作者
Andrés J. Muñoz Martín,Juan Carlos Souto,Ramón Lecumberri,Berta Obispo,Antonio Sánchez,Jorge Aparicio,Cristina Aguayo,David Gutiérrez,Andrés García‐Palomo,Víctor Fanjul,Carlos Del Rio‐Bermudez,María Carmen Viñuela-Benéitez,Miguel Ángel Hernández-Presa
出处
期刊:Thrombosis Research [Elsevier BV]
卷期号:228: 181-188 被引量:17
标识
DOI:10.1016/j.thromres.2023.06.015
摘要

Introduction Patients with cancer and venous thromboembolism (VTE) show a high risk of VTE recurrence during anticoagulant treatment. This study aimed to develop a predictive model to assess the risk of VTE recurrence within 6 months at the moment of primary VTE diagnosis in these patients. Materials and methods Using the EHRead® technology, based on Natural Language Processing (NLP) and machine learning (ML), the unstructured data in electronic health records from 9 Spanish hospitals between 2014 and 2018 were extracted. Both clinically- and ML-driven feature selection were performed to identify predictors for VTE recurrence. Logistic regression (LR), decision tree (DT), and random forest (RF) algorithms were used to train different prediction models, which were subsequently validated in a hold-out data set. Results A total of 16,407 anticoagulated cancer patients with diagnosis of VTE were identified (54.4 % male and median age 70). Deep vein thrombosis, pulmonary embolism and metastases were observed in 67.2 %, 26.6 %, and 47.7 % of the patients, respectively. During the study follow-up, 11.4 % of the patients developed a recurrent VTE, being more frequent in patients with lung cancer. Feature selection and model training based on ML identified primary pulmonary embolism, deep vein thrombosis, metastasis, adenocarcinoma, hemoglobin and serum creatinine levels, platelet and leukocyte count, family history of VTE, and patients' age as predictors of VTE recurrence within 6 months of VTE diagnosis. The LR model had an AUC-ROC (95 % CI) of 0.66 (0.61, 0.70), the DT of 0.69 (0.65, 0.72) and the RF of 0.68 (0.63, 0.72). Conclusions This is the first ML-based predictive model designed to predict 6-months VTE recurrence in patients with cancer. These results hold great potential to assist clinicians to identify the high-risk patients and improve their clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵咪西西完成签到 ,获得积分10
4秒前
科研通AI5应助Finger采纳,获得10
8秒前
sleet完成签到,获得积分10
20秒前
D-L@rabbit完成签到 ,获得积分10
22秒前
听话的大碗完成签到 ,获得积分10
24秒前
动听的谷秋完成签到 ,获得积分10
25秒前
小巧的柏柳完成签到 ,获得积分10
34秒前
王啦啦完成签到,获得积分10
38秒前
40秒前
路路完成签到 ,获得积分10
40秒前
Youlu发布了新的文献求助10
45秒前
归尘应助科研通管家采纳,获得10
49秒前
归尘应助科研通管家采纳,获得10
49秒前
归尘应助科研通管家采纳,获得10
49秒前
归尘应助科研通管家采纳,获得10
49秒前
cdercder应助科研通管家采纳,获得10
49秒前
归尘应助科研通管家采纳,获得10
49秒前
cdercder应助科研通管家采纳,获得10
49秒前
归尘应助科研通管家采纳,获得10
49秒前
科研通AI2S应助Youlu采纳,获得10
49秒前
CipherSage应助Youlu采纳,获得10
49秒前
顺利毕业完成签到 ,获得积分10
56秒前
微卫星不稳定完成签到 ,获得积分10
1分钟前
MM完成签到,获得积分10
1分钟前
滴滴完成签到 ,获得积分10
1分钟前
而已完成签到,获得积分10
1分钟前
在水一方应助SDNUDRUG采纳,获得10
1分钟前
沉默的冬寒完成签到 ,获得积分10
1分钟前
1分钟前
苏苏爱学习完成签到 ,获得积分10
1分钟前
钟声完成签到,获得积分0
1分钟前
Guo完成签到 ,获得积分10
1分钟前
SDNUDRUG发布了新的文献求助10
1分钟前
小马甲应助ybwei2008_163采纳,获得10
1分钟前
陈尹蓝完成签到 ,获得积分10
1分钟前
spy完成签到 ,获得积分10
1分钟前
strama完成签到,获得积分10
1分钟前
2分钟前
Aaernan完成签到 ,获得积分10
2分钟前
SDNUDRUG发布了新的文献求助10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226680
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732