UAV multispectral images for accurate estimation of the maize LAI considering the effect of soil background

叶面积指数 多光谱图像 遥感 像素 天蓬 生长季节 Boosting(机器学习) 精准农业 数学 环境科学 地理 计算机科学 农学 人工智能 生物 农业 考古
作者
Shuaibing Liu,Xiuliang Jin,Yi Bai,Wenbin Wu,Ningbo Cui,Minghan Cheng,Lei Zhu,Lin Meng,Xiao Jia,Chenwei Nie,Dameng Yin
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:121: 103383-103383 被引量:21
标识
DOI:10.1016/j.jag.2023.103383
摘要

The high proportion of soil background pixels in UAV remote sensing images is an important reason for the uncertainty of high-precision leaf area index (LAI) estimation at early growth stages of crops. Although the traditional method of removing soil pixels from images based on canopy coverage (CC) eliminates pure soil pixels, it can cause spectral saturation at the early stages and therefore affect the accuracy of LAI estimation. In this study, a new method called reduced soil contribution (CS) was constructed to improve the accuracy of LAI estimation. This method can be improved by introducing a quantitative method to account for the contribution of soil information, which can be used to correct the calculation of vegetation indices and eliminate soil interference in maize LAI estimation. A six-rotor UAV equipped with a multispectral camera was used to collect field image data. Experimental plots with different maize breeding varieties were laid out to carefully evaluate the accuracy of the estimation model using UAV multispectral images collected at different growth stages. The performance of four estimation models, a light gradient boosting machine, gradient-boosting decision tree, random forest regression model and extreme gradient boosting, for LAI estimation was evaluated. The CS-based approach significantly improved the accuracy of the LAI model estimation, reducing the rRMSE by 1.89% for a single growing season compared to the traditional method. On average, the rRMSE for all growth stages decreased by 3.5%, demonstrating its effectiveness in improving maize LAI estimation accuracy. Randomness in error measured by Moran’s I metrics showed that the GBDT (gradient-boosting decision trees) model based on the CS method showed less spatial aggregation. These results showed that the CS model can effectively reduce the influence of soil on the estimation of the maize LAI and improve the LAI estimation accuracy compared with the direct removal of soil background pixels from an image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
N_N驳回了小马甲应助
刚刚
希望天下0贩的0应助lynvin采纳,获得10
1秒前
1秒前
科目三应助zz采纳,获得10
2秒前
路十三发布了新的文献求助10
2秒前
橘子味汽水完成签到 ,获得积分10
2秒前
2秒前
3秒前
豪哥大大完成签到,获得积分10
3秒前
搜集达人应助深情冬云采纳,获得30
4秒前
5秒前
bc应助zyh采纳,获得20
5秒前
过时的白云完成签到,获得积分10
5秒前
辣目童子完成签到 ,获得积分10
5秒前
Owen应助舒适的虔采纳,获得10
6秒前
6秒前
呵呵哒完成签到,获得积分10
7秒前
完美世界应助啊咧采纳,获得10
7秒前
黄毛虎发布了新的文献求助10
8秒前
酷炫甜瓜完成签到,获得积分10
8秒前
9秒前
霍霍完成签到 ,获得积分10
9秒前
梅子黄时雨完成签到,获得积分10
10秒前
中草药完成签到,获得积分10
10秒前
10秒前
略略略完成签到 ,获得积分10
11秒前
a31发布了新的文献求助10
11秒前
11秒前
12秒前
yywa发布了新的文献求助10
12秒前
12秒前
Shine完成签到 ,获得积分10
12秒前
彩色飞柏发布了新的文献求助10
13秒前
清秋完成签到,获得积分10
13秒前
大力哈密瓜完成签到,获得积分10
13秒前
13秒前
HQ完成签到,获得积分10
14秒前
14秒前
路十三完成签到,获得积分10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793818
求助须知:如何正确求助?哪些是违规求助? 3338647
关于积分的说明 10291005
捐赠科研通 3055082
什么是DOI,文献DOI怎么找? 1676342
邀请新用户注册赠送积分活动 804374
科研通“疑难数据库(出版商)”最低求助积分说明 761853